117 research outputs found

    Modeling and testing of high frequency GPR data for evaluation of structural deformation

    Get PDF
    The paper describes the application, on a hollow pier, of a high frequency multi-component 2 GHz GPR antenna for the evaluation of deformation induced by mechanical stress. The study, performed in the laboratory, was made on a reinforced concrete hollow pier built to scale 1:5. The GPR survey data were obtained before and after the mechanical stress application, in reflection and transillumination modes. The data interpretation was supported by a GPR theoretical model of a pier. The interpretation of the GPR reflection data was very challenging as the iron rods used to reinforce the pier led to wave diffraction and the air inter-space inside the pier itself produced multiple reflections. No continuous fractures were revealed, probably because the stress caused only micro-fractures. This assumption was supported by analyses of the time slices from reflection data and the first direct wave arrival times from transillumination data. In the second survey we observed increased reflectivity in the time slices and decreased first arrival times of the direct wave, with respect to the first survey. The theoretical GPR data carried out on the physical model, which reproduced the actual pier, were found to be very useful tools for interpreting the actual data as they allow signal to noise separation. (C) 2009 Elsevier Ltd. All rights reserved

    Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics: State of art

    Get PDF
    Breast cancer represents the most common malignancy in women, being one of the most frequent cause of cancer-related mortality. Ultrasound, mammography, and magnetic resonance imaging (MRI) play a pivotal role in the diagnosis of breast lesions, with different levels of accuracy. Particularly, dynamic contrast-enhanced MRI has shown high diagnostic value in detecting multifocal, multicentric, or contralateral breast cancers. Radiomics is emerging as a promising tool for quantitative tumor evaluation, allowing the extraction of additional quantitative data from radiological imaging acquired with different modalities. Radiomics analysis may provide novel information through the quantification of lesions heterogeneity, that may be relevant in clinical practice for the characterization of breast lesions, prediction of tumor response to systemic therapies and evaluation of prognosis in patients with breast cancers. Several published studies have explored the value of radiomics with good-to-excellent diagnostic and prognostic performances for the evaluation of breast lesions. Particularly, the integrations of radiomics data with other clinical and histopathological parameters have demonstrated to improve the prediction of tumor aggressiveness with high accuracy and provided precise models that will help to guide clinical decisions and patients management. The purpose of this article in to describe the current application of radiomics in breast dynamic contrast-enhanced MRI

    Prognostic Analysis of the IDH1 G105G (rs11554137) SNP in IDH-Wildtype Glioblastoma

    Get PDF
    The G105G SNP (rs11554137) in the IDH1 gene is observed in about 10–15% of patients with a diffuse glioma. Data regarding its impact on gliomas are poor and partially conflicting, possibly due to the evolving classification of CNS tumors. The aim of this study was to investigate the G105G SNP prognostic significance in a homogenous cohort of IDH-wildtype glioblastomas, in agreement with the 2021 WHO classification. The study analyzed 211 patients by collecting several clinico-pathological and molecular characteristics, including the age, lesion localization, number of involved lobes, type of surgical treatment, disease outcome and MGMT promoter methylation status. PFS and DSS curves were plotted according to the Kaplan–Meier method and statistical analyses were performed using parametric and non-parametric tests. A total of 32 patients out of 211 (15.2%) were found to be G105G SNP carriers. No significant impact of the IDH1 G105G SNP on patients’ outcomes was observed in terms of PFS and DSS, while MGMT promoter methylation and gross total resection resulted as key prognostic factors in our cohort as expected. No prognostic impact of the IDH1 G105G SNP was detected in this strict cohort of IDH-wildtype glioblastomas. Analysis of larger cohorts is warranted to address the sample size limitations

    Genetic control of renal tumorigenesis by the mouse Rtm1 locus

    Get PDF
    BACKGROUND: The genetic basis of susceptibility to renal tumorigenesis has not yet been established in mouse strains. Mouse lines derived by bidirectional phenotypic selection on the basis of their maximal (AIRmax) or minimal (AIRmin) acute inflammatory responsiveness differ widely in susceptibility to spontaneous and urethane-induced renal tumorigenesis. To map the functional loci modulating renal tumor susceptibility in these mice, we carried out a genome-wide genetic linkage study, using SNP arrays, in an (AIRmax x AIRmin)F2 intercross population treated with a single urethane dose at 1 week of age and phenotyped for renal tumors at 35 weeks of age. RESULTS: AIRmax mice did not develop renal tumors spontaneously nor in response to urethane, whereas in AIRmin mice renal tumors formed spontaneously (in 52% of animals) and after urethane induction (89%). The tumors had a papillary morphology and were positive for alpha-methylacyl-CoA racemase and negative for CD10. By analysis of 879 informative SNPs in 662 mice, we mapped a single quantitative trait locus modulating the incidence of renal tumors in the (AIRmax x AIRmin)F2 intercross population. This locus, which we named Renal tumor modifier QTL 1 (Rtm1), mapped to chromosome 17 at 23.4 Mb (LOD score = 15.8), with SNPs rs3696835 and rs3719497 flanking the LOD score peak. The A allele of rs3719497 from AIRmin mice was associated with a 2.5-fold increased odds ratio for renal tumor development. The LOD score peak included the Tuberous sclerosis 2 (Tsc2) gene which has already been implicated in kidney disease: loss of function by germline retroviral insertion is associated with spontaneous renal tumorigenesis in the Eker rat, and heterozygous-null Tsc2((+/-)) mice develop renal cystadenomas. CONCLUSIONS: We mapped Rtm1 as a single major locus modulating renal tumorigenesis in a murine intercross population. Thus, the AIR mouse lines can be considered a new genetic model for studying the role of germline and somatic molecular alterations in kidney neoplastic disease

    HER2-Displaying M13 Bacteriophages induce Therapeutic Immunity against Breast Cancer

    Get PDF
    The advent of trastuzumab has significantly improved the prognosis of HER2-positive (HER2+) breast cancer patients; nevertheless, drug resistance limits its clinical benefit. Anti-HER2 active immunotherapy represents an attractive alternative strategy, but effective immunization needs to overcome the patient's immune tolerance against the self-HER2. Phage display technology, taking advantage of phage intrinsic immunogenicity, permits one to generate effective cancer vaccines able to break immune tolerance to self-antigens. In this study, we demonstrate that both preventive and therapeutic vaccination with M13 bacteriophages, displaying the extracellular (EC) and transmembrane (TM) domains of human HER2 or its Δ16HER2 splice variant on their surface (ECTM and Δ16ECTM phages), delayed mammary tumor onset and reduced tumor growth rate and multiplicity in ∆16HER2 transgenic mice, which are tolerant to human ∆16HER2. This antitumor protection correlated with anti-HER2 antibody production. The molecular mechanisms underlying the anticancer effect of vaccine-elicited anti-HER2 antibodies were analyzed in vitro against BT-474 human breast cancer cells, sensitive or resistant to trastuzumab. Immunoglobulins (IgG) purified from immune sera reduced cell viability mainly by impairing ERK phosphorylation and reactivating retinoblastoma protein function in both trastuzumab-sensitive and -resistant BT-474 cells. In conclusion, we demonstrated that phage-based HER2 vaccines impair mammary cancer onset and progression, opening new perspectives for HER2+ breast cancer treatment

    Reduced humoral response to two doses of COVID-19 vaccine in patients with inflammatory bowel disease: Data from ESCAPE-IBD, an IG-IBD study

    Get PDF
    Background Patients on immunosuppressive drugs have been excluded from COVID-19 vaccines trials, creating concerns regarding their efficacy. Aims To explore the humoral response to COVID-19 vaccines in patients with inflammatory bowel disease (IBD) Methods Effectiveness and Safety of COVID-19 Vaccine in Patients with Inflammatory Bowel Disease (IBD) Treated with Immunomodulatory or Biological Drugs (ESCAPE-IBD) is a prospective, multicentre study promoted by the Italian Group for the study of Inflammatory Bowel Disease. We present data on serological response eight weeks after the second dose of COVID-19 vaccination in IBD patients and healthy controls (HCs). Results 1076 patients with IBD and 1126 HCs were analyzed. Seropositivity for anti-SARS-CoV-2 IgG was reported for most IBD patients, even if with a lesser rate compared with HCs (92.1% vs. 97.9%; p<0.001). HCs had higher antibody concentrations (median OD 8.72 [IQR 5.2-14-2]) compared to the whole cohort of IBD patients (median OD 1.54 [IQR 0.8-3.6]; p<0.001) and the subgroup of IBD patients (n=280) without any treatment or on aminosalicylates only (median OD 1.72 [IQR 1.0–4.1]; p<0.001). Conclusions Although most IBD patients showed seropositivity after COVID-19 vaccines, the magnitude of the humoral response was significantly lower than in HCs. Differently from other studies, these findings seem to be mostly unrelated to the use of immune-modifying treatments (ClinicalTrials.govID:NCT04769258)

    Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP)

    Get PDF
    This paper provides results from a suite of analyses made on human dental material from the Late Palaeolithic to Neolithic strata of the cave site of Grotta Continenza situated in the Fucino Basin of the Abruzzo region of central Italy. The available human remains from this site provide a unique possibility to study ways in which forager versus farmer lifeways affected human odonto-skeletal remains. The main aim of our study is to understand palaeodietary patterns and their changes over time as reflected in teeth. These analyses involve a review of metrics and oral pathologies, micro-fossils preserved in the mineralized dental plaque, macrowear, and buccal microwear. Our results suggest that these complementary approaches support the assumption about a critical change in dental conditions and status with the introduction of Neolithic foodstuff and habits. However, we warn that different methodologies applied here provide data at different scales of resolution for detecting such changes and a multipronged approach to the study of dental collections is needed for a more comprehensive and nuanced understanding of diachronic changes
    • …
    corecore