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Abstract
Breast cancer represents the most common malignancy in women, being one of 
the most frequent cause of cancer-related mortality. Ultrasound, mammography, 
and magnetic resonance imaging (MRI) play a pivotal role in the diagnosis of 
breast lesions, with different levels of accuracy. Particularly, dynamic contrast-
enhanced MRI has shown high diagnostic value in detecting multifocal, 
multicentric, or contralateral breast cancers. Radiomics is emerging as a promising 
tool for quantitative tumor evaluation, allowing the extraction of additional 
quantitative data from radiological imaging acquired with different modalities. 
Radiomics analysis may provide novel information through the quantification of 
lesions heterogeneity, that may be relevant in clinical practice for the 
characterization of breast lesions, prediction of tumor response to systemic 
therapies and evaluation of prognosis in patients with breast cancers. Several 
published studies have explored the value of radiomics with good-to-excellent 
diagnostic and prognostic performances for the evaluation of breast lesions. 
Particularly, the integrations of radiomics data with other clinical and 
histopathological parameters have demonstrated to improve the prediction of 
tumor aggressiveness with high accuracy and provided precise models that will 
help to guide clinical decisions and patients management. The purpose of this 
article in to describe the current application of radiomics in breast dynamic 
contrast-enhanced MRI.
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Core tip: Dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI) has been 
evaluated in most of radiomics studies on breast cancers. However, heterogeneity in study 
designs related to magnetic field, contrast media used, and software available to perform 
radiomics challenge the comparisons of available results. In this review we will focus on 
the following applications of radiomics in breast DCE-MRI: characterization of breast 
lesions, prediction of breast cancer histological types, correlation with receptor status, 
prediction of lymph node metastases, prediction of tumor response to neoadjuvant 
systemic therapy, prognosis and recurrence risks.
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INTRODUCTION
Breast cancer represents the most common malignancy in women[1]. It is estimated that 
268600 US women were newly diagnosed with invasive breast cancer in 2019, and that 
41760 US women died of breast cancer[1]. Because of its incidence and clinical impact, 
early and accurate tumor detection with imaging is of utmost importance. Ultrasound, 
mammography, and magnetic resonance imaging (MRI) play a pivotal role in the 
diagnosis of breast lesions, with different levels of accuracy. Particularly, MRI has 
shown a greater sensitivity than mammography (92% vs 75%, respectively)[2] and 
ultrasound (90% vs 39% and 49% of ultrasound alone or associated with mam-
mography, respectively)[3] for the diagnosis of breast cancer. Thanks to the ability to 
provide both morphologic and hemodynamic features, dynamic contrast-enhanced 
MRI (DCE-MRI) provides high sensitivity (over 90%) in the detection of breast cancer, 
although specificity for lesion characterization is still suboptimal (72%)[2,3]. DCE-MRI 
has shown high diagnostic value in detecting multifocal, multicentric, or contralateral 
disease not diagnosed on physical examination, mammography or ultrasound, 
recognition of ductal carcinoma in situ (DCIS), evaluation of treatment response to 
neoadjuvant chemotherapy, detection of occult primary breast cancer in patients with 
metastatic axillary nodes (the so-called “CUP syndrome”), and detection of cancer in 
dense breast tissue[4].

Recently, an increasing interest for the clinical utility of quantitative imaging is 
developing. In this scenario, radiomics is emerging as a promising tool for quantitative 
tumor evaluation. Radiomics allow to extract quantitative data from medical images 
that be combined to provide models for clinical decision support[5].

The purpose of this article in to describe the current application of radiomics in 
breast dynamic contrast-enhanced MRI.

CONCEPTS OF RADIOMICS ANLYSIS
Radiomics is a complex process that articulates into distinct steps, including: 
Acquisition of images, tumor segmentation, feature extraction, exploratory analysis, 
and model building. The first step of radiomics is acquisition of high-quality images. 
Potentially, all the radiologic techniques may be used for radiomics analysis. In the 
field of breast imaging, all the techniques (mammography, ultrasound, and MRI) have 
shown promising results in radiomics studies. Particularly, breast MRI is commonly 
performed using T2-weighted images acquired to characterized diseased tissue, 
diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) that have 
an important clinical role in the evaluation of breast lesions, and post-contrast 
dynamic imaging that are mandatory for the differentiation of benign and malignant 
lesions. Next step is the segmentation of the lesion (Figure 1), with selection of a region 
of interest (ROI) and delineation of the borders of its volume. The ROI selection 
process is not yet standardized and it is linked to high levels of variability between 
different studies, as it can include the whole tumor or single slice segmentation[6].

Feature extraction may be performed with different radiomics software that are able 

https://www.wjgnet.com/2644-3260/full/v1/i1/6.htm
https://dx.doi.org/10.35711/aimi.v1.i1.6
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Figure 1  Examples of lesion segmentation in dynamic contrast-enhanced-magnetic resonance imaging in a 70-year-old woman with 3.0 
cm breast cancer lesion. A: Short tau inversion recovery; B: Diffusion-weighted imaging; C: Contrast-enhanced sequences.

to provide a large number of quantitative features. Quantitative radiomics features can 
be divided into morphological (basic features that describe the shape of the ROI and its 
geometric properties such as volume, diameter, sphericity), and statistical (calculated 
using statistical methods). These features can be further divided into first order 
(histogram-based) features that describe the distribution of voxel values without 
considering the spatial relationships (i.e. mean, median, skewness, kurtosis, and 
entropy); second order texture features that are obtained by calculating the 
relationships between neighboring voxels (i.e. grey level co-occurrence matrix, grey 
level run length matrix, grey level size zone matrix); and third order features that are 
obtained by statistical methods after applying filters or mathematical transforms to the 
images (i.e. wavelet transform, Laplacian transforms of Gaussian-filtered images)[7].

The next and last step in the workflow is building the statistical radiomics model 
with the purpose to predict an outcome or response variables. Different models can be 
evaluated to predict a specific outcome or a response using a variety of classifiers.

APPLICATION OF RADIOMICS IN BREAST DCE-MRI
The emerging field of radiomics was applied to several breast imaging modalities[8,9]. 
Nevertheless, DCE-MRI was used in most studies but with heterogeneity in study 
designs related to magnetic field (1.5T or 3T), contrast media used, and software 
available to perform radiomics[10]. In this review we will focus the following 
applications of radiomics in breast DCE-MRI: Characterization of breast lesions, 
prediction of breast cancer histological types, correlation with receptor status, 
prediction with lymph node metastases, prediction of tumor response to neoadjuvant 
systemic therapy (NST), prognosis and recurrence risks.

Characterization of breast lesions
Radiomics features extracted from multiple MRI sequences have shown to be helpful 
in establishing predictive models that could help differentiate between benign and 
malignant breast lesions. Several radiomics models were proposed with promising 
results, with most texture analysis performed on post-contrast T1-weighted images, 
alone or in association with other sequences (T2w and ADC maps).

Since the very first studies in literature, conducted on small populations analyzing 
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different types of features extracted (dynamic, textural, spatio-temporal) from breast 
contrast-enhanced MRI, the dynamic subset revealed the best performance for the 
characterization of breast lesions for Fusco et al[11]. Testing a multi-layer perceptron 
neural network classifier, with an automatic ROI segmentation or ROI classification, 
they found an accuracy for dynamic features subset of about 80%, with the major 
discrimination power in differentiating benign from malignant lesions found for 
“basal signal”, “sum of intensities difference”, “relative enhancement slope” and 
“relative enhancement” features.

Nie et al[12] investigated the utility of breast lesions morphology and textural features 
for differentiating between benign and malignant lesions, with both manual and 
automated segmentation and performing diagnostic feature selection using artificial 
neural network. They found that among morphological features “Compactness” and 
“Normalized Radial Length Entropy” showed significant differences between the 
benign and the malignant groups, whereas among “Gray Level Co-occurrence 
Matrices” texture features, “Gray Level Entropy” and “Gray Level Sum Average” 
were significantly lower in benign compared to malignant lesions. Analyzing the 
diagnostic performance of individual and combined features the highest AUROC 
(0.86) was obtained combining the following 6 features: Compactness, NRL entropy, 
volume, gray level entropy, gray level sum average, and homogeneity. Entropy is an 
important feature associated with tumor aggressiveness. It represents one of the most 
reliable feature to distinguish malignant from benign lesions, with the irregularity of 
texture reflecting the tumor heterogeneity, and tumor aggressiveness[13-15]. Gibbs 
et al[16], testing texture analysis with the aim to characterize breast lesions, concluded 
that texture features of variance, sum entropy, and entropy were the most significant 
when discriminating between benign and malignant lesions.

Radiomics model of quantitative pharmacokinetic maps demonstrated a strong 
ability to discriminate between benign and malignant breast lesions, directly reflecting 
the physiological properties of tissues, such as vessel permeability, perfusion, and 
volume of the extravascular/extracellular space[13,17]. Nagarajan et al[18] studied texture 
features extracted from the lesion enhancement pattern on all five post-contrast 
images, thus using a dynamic texture quantification approach. In this study, the 
highest AUROC (0.82) was achieved with texture features responsible for capturing 
aspects of lesion heterogeneity. Gibbs et al[19] also assessed the efficacy of radiomics 
analysis with quantitative pharmacokinetic maps in small breast lesions (less than 1 
cm). Their results showed that texture parameters calculated from initial enhancement, 
overall enhancement, and area under the enhancement curve maps offered similar 
discriminatory power in discriminating benign and malignant breast lesions, whereas 
texture features obtained from washout maps did not demonstrate any diagnostic 
value[19].

While many studies focused on discriminatory capacities of specific texture features 
extracted from combining quantitative pharmacokinetic parameters of DCE-MRI 
sequences, few studies used a multiparametric approach analyzing also feature 
extracted from other sequences, such as T2-weigthed and T1-weigthed imaging, 
diffusion kurtosis imaging, and ADC maps. The multimodal MRI-based radiomics 
model developed by Zhang et al[13] demonstrated higher diagnostic ability for 
differentiating benign and malignant breast lesions [Area under curve (AUC) = 0.921], 
increasing the discriminatory power of radiomics features extracted from DCE 
pharmacokinetic parameter maps alone (AUC = 0.836). In particular, analyzing 
textural features included in the radiomics models, malignant breast lesions had 
higher entropy and nonuniformity than benign lesions. The multiview IsoSVM (hybrid 
isomap and support vector machine) model applied by Parekh et al[20] to radiomics 
features extracted from multiparametric breast MR imaging at 3T, classified benign 
and malignant breast tumors with an AUROC of 0.91, sensitivity of 93%, and 
specificity of 85%. In this study, entropy features maps obtained demonstrated 
significantly higher entropy for malignant than benign lesions on post contrast DCE-
MRI and ADC maps[20]. The same authors developed a multiparametric imaging 
radiomics framework for extraction of first and second order radiomics features from 
multiparametric radiological datasets which provided a 9%-28% increase in AUROC 
over single radiomics parameters. Similar results were reported by Bhooshan et al[21], 
who found the better performance applying a multiparametric feature vector, with T2-
weighted MRI textural features added to DCE-MRI kinetic ones.

Radiomics features extracted from unenhanced MRI sequences were also evaluated 
for the prediction of malignancies. In the study of Bickelhaupt et al[22] an unenhanced, 
abbreviated DWI protocol (ueMRI), including T2-weighted, DWI, DWI with 
background suppression sequences, and corresponding ADC maps, was used to test 
three machine learning classifiers including univariate mean ADC model, 
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unconstrained radiomics model, constrained radiomics model with mandatory 
inclusion of mean ADC. The last two radiomics classifiers were found to be able to 
distinguish benign from malignant lesions more accurately (AUROC of 0.842 and 
0.851) than the mean ADC parameter alone (AUROC of 0.774)[22]. Nevertheless, the 
performance remained lower than that of the experienced breast radiologist using 
standard DCE-MRI protocol[22]. ADC radiomics features reflect the heterogeneity of 
diffusion in tumors, relative to the cell density and the microenvironment distribution 
inside the lesion. Hu et al[23] found that ADC radiomics score was more accurate than 
ADC values alone and they developed a prediction model based on ADC radiomics, 
pharmacokinetics and clinical features, which showed good diagnostic performance in 
differentiating benign and malignant lesions classified as BI-RADS 4. A radiomics 
model based on kurtosis diffusion-weighted imaging was evaluated by Bickelhaupt 
et al[24] who conducted a multicentric and prospective study on BI-RADS 4 and 5 
lesions, by using MRI scanners from different vendors, showing reliable results, with a 
real benefit for BI-RADS 4a and 4b breast lesions.

Finally, more recent studies are using DCE-MRI focusing their attention on 
peritumoural tissues inclusion during segmentation. Zhou et al[25] found that the 
smallest bounding box, that included a small amount of peritumoral tissue adjacent to 
the tumor, had higher accuracy compared to tumor alone or larger input boxes.

Prediction of breast cancer histological types
Few studies employed radiomics models and texture analysis to distinguish between 
the heterogeneous histopathologic subtypes of breast cancer and entropy-based 
features from the co-occurrence matrix appear to be most crucial, with promising 
results. Invasive ductal (IDC) and lobular (ILC) carcinoma are the most common 
pathologic types. The different growth patterns may manifest with different 
heterogeneity of internal enhancement in DCE-MRI, and could be the basis to 
differentiate between these two histological types by means of textural analysis[14,26]. 
Holli et al[26] found that the co-occurrence matrix texture features group was 
statistically significant different between ductal and lobular invasive cancers on DCE-
MR images. Similar conclusions were reported by Waugh et al[14] analyzing differences 
between IDC, ILC and in situ ductal carcinoma (DCIS). Chou et al[27] investigated the 
potential role of radiomics in classifying DCIS nuclear grade and found that only one 
heterogeneity metric, surface-to-volume ratio from the “shape and morphology” 
metrics group, was significantly different between “high nuclear grade” and “non-
high nuclear grade” DCIS.

Correlation with receptor status and molecular subtypes
Expression of Ki-67, estrogen receptor (ER), progesterone receptor, human epidermal 
growth factor 2 receptor (HER2) are crucial factors to differentiate breast cancers into 
four main molecular subtypes (Luminal A, Luminal B, Her2 over-expressing, and 
triple negative, TN) with different outcomes and therapeutic strategies. According to 
the molecular subtypes different strategies, including surgery, adjuvant or 
neoadjuvant therapies, can be undertaken[28-31]. Current assessment of molecular 
subtypes is mostly based on immunohistochemistry (IHC)[32]. When IHC is tested in 
tissue specimens obtained by needle biopsy, could be not totally representative of the 
entire tumor or provide inconclusive results due to insufficient material. In this setting, 
according to prior studies, DCE-MRI may provide information suggesting the 
molecular subtype of breast cancer. In 2018, the American Joint Committee on Cancer 
updated the breast cancer staging guidelines to add other cancer characteristics to the 
TNM system to determine a cancer’s stage, including receptorial status[33]. When 
developing a treatment plan, a correct assessment of receptorial status is crucial. 
Several published studies revealed that rim enhancement, heterogeneous internal 
enhancement, and peritumoral edema are more frequently associated with TN than 
Luminal subtypes[34,35]. In the study of Blaschke et al[36] HER2-enriched tumors showed 
the percent volume with > 50% and > 100% early phase uptake higher than Luminal 
A/B lesions at kinetic assessment. TN tends to be more frequently round in shape[32,37], 
Her2 cancers with smooth margins than other subtypes[37]. Controversial results were 
reported for diffusion-weighted imaging, suggesting that high ADC values are 
associated with HER2 subtypes[38] or with Luminal A[39], and for spectroscopy, 
suggesting that high values of tCho are statistically correlated to the TN subtype for 
some authors[39,40], and with non-TN and Luminal B[41].

Several studies investigated the relationship between radiomics MRI features and 
breast cancer receptor status[42-44]. Wu et al[45] reported only few features significantly 
associated with Luminal A, Luminal B or TN in their study cohorts for distinguishing 
different molecular subtypes of breast cancers. Radiomics analysis conducted by Li 
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et al[46] showed a statistically significant trend for the relationship between 
enhancement textures (entropy) and molecular subtypes in the task of distinguishing 
between ER+ versus ER−. Indeed, heterogeneous nature of contrast uptake within the 
breast tumor is related to molecular subtype. Similar observations were reported by 
Waugh et al[14], revealing that HER2-enriched and TN cancers showed a significant 
increase in entropy value. In the study of Chang et al[47] the quantitative region-based 
features extracted from breast DCE-MRI were used to interpret the intra-tumoral 
heterogeneity and correlated with ER, HER2, and TNBC, with better performance than 
morphological features (texture features and shape feature) and the pharmacokinetic 
model. Fan et al[48] investigated the use of features extracted from DCE-MRI for the 
prediction of the molecular subtypes of breast cancer and observed low kurtosis and 
skewness for the luminal A subtype, the highest enhancement values in the normal 
breasts for Her 2 subtypes and the lowest for luminal A and luminal B tumors. 
Furthermore, other studies suggested the value of the heterogeneity of the 
surrounding parenchyma, including background parenchymal enhancement features 
in differentiating TN breast cancers from others, as observed by Wang et al[49]. The 
evaluation of both peritumoral and intratumoral features allowed to identify HER2 
subtype with better accuracy than intratumoral features alone in the study of Braman 
et al[50]. According to the results of Leithner et al[51] radiomics analysis from DWI with 
ADC mapping allows evaluation of breast cancer receptor status and molecular 
subtyping. For differentiating ER positive breast cancer molecular subtypes (Luminal 
A vs Luminal B) the two most discriminative texture parameters extracted from the 
dynamic T1-weighted sequences by Holli-Helenius et al[52] were sum entropy and sum 
variance, which also showed positive correlation with higher Ki-67 index.

High Ki-67 expression is a well-known prognostic factor, related to better neo-
adjuvant therapy response but poorer prognosis. Assessment of Ki-67 based on 
immunohistochemistry on tissue specimens obtained by needle biopsy sample may 
not be representative of the whole tumor because of the relatively small tissue sample 
size and tumor heterogeneity. In the attempt to predict the expression of Ki-67 several 
studies have explored the potential of radiomics imaging features, with promising 
results. In their retrospective study, Ma et al[53] showed that texture features extracted 
on the first post-contrast images were associated with breast cancer Ki-67 expression. 
Similar results were obtained by Juan et al[54]. A correlation between Ki-67 expression 
and radiomics features were observed also performing features extraction from T2-
weighted images[55] and ADC maps[56].

Prediction of lymph node status
Involvement of axillary lymph nodes (LN) in patients with breast cancers represents a 
crucial prognostic factor, as it guides therapeutic management. Non-invasive methods 
to preoperatively evaluate LN metastasis are highly needed. Some promising studies 
suggested that radiomics models could be able to achieve this objective. In recent 
studies, specific lesions textural features extracted from anatomical and functional MRI 
images, improved the performance of radiomics models in predicting LN 
metastasis[57,58]. Liu et al[59] demonstrated that DCE-MRI radiomics features, particularly 
features extracted from peritumoral regions, associated with clinico-pathologic 
informations were able to predict LN metastasis in breast cancer patients. Indeed, the 
area surrounding tumors, is thought to carry informations such as peritumoral 
lymphatic vessel invasion, lymphocytic infiltration, and edema[59,60]. Other authors 
reported that the best results were obtained when the features extraction was 
performed in the strongest phases of tumor enhancement, probably because it shows 
more clearly the lesion boundaries and better reflects the tumor heterogeneity and 
invasiveness[61]. The radiomics nomogram developed by Han et al[62] demonstrated 
excellent performance to predict LN metastases, and good ability in distinguishing the 
number of metastatic LNs. Similar performances were reported by several other 
evidences[59,63-65]. Finally, only very few studies evaluated texture analysis in identified 
index lymph nodes in postcontrast T1-weighted images, concluding that morphologic 
features were more predictive than kinetic and texture features[66,67].

Prediction of tumor response to neo-adjuvant therapy
NST is often the first line treatment for those patients diagnosed with locally advanced 
breast cancer, with several potential advantages, including the reduction of tumor size 
to allow breast-conservative surgery instead of mastectomy, as well as a prognostic 
indicator[68]. The pathologic complete response (pCR) rate range from 0.3%–38.7%, 
depending on cancer subtype and breast cancer stage[69]. Early identification of patients 
who are not likely to achieve pCR is crucial as they could benefit from changes to their 
initial NST regimens. DCE-MRI is considered as the most reliable technique for 
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evaluating the responses to NST. According to a meta-analysis based on 25 studies, 
breast MRI had high specificity (up to 90.7%), but low sensitivity (63.1%) in predicting 
pathologic complete remission after preoperative therapy in patients with breast 
cancer[70]. According to another recent meta-analysis, accuracy in detection of residual 
malignancy with breast MRI varies also in consideration of the treatment type, with 
AUC values ranging from 0.83 to 0.89, and on the basis of response definition, for 
instance volume reduction, absence of enhancement or enhancement equal or less than 
breast parenchyma[71,72]. The wide heterogeneity of studies, with controversial results, 
suggests to standardize definitions and primary endpoints to produce clinically 
significant results[73].

The identification of pCR is still a challenge and according with several studies, 
radiomics can be helpful in a non-invasive prediction of response to NST[74-78]. In most 
studies, GLCM features were the most predictive of therapy response, particularly 
entropy[79-81]. Noteworthy, in the study of Parikh et al[82], responders to NST showed 
increase in lesion homogeneity after one round of therapy. Cao et al[83] demonstrated 
that texture analysis may help to improve the performance of post-NST MRI in 
identifying pCR in mass-like breast cancer, showing that entropy was an independent 
risk factor. Intratumoral spatial heterogeneity at perfusion MRI appeared to be an 
independent prognostic factor of recurrence-free-survival in patients with locally 
advanced breast cancers treated with NST[84]. Significate differences between pCR and 
non-pCR patients were found for texture parameters also by Fusco et al[85]. Peritumoral 
region includes prognostic informations, such as angiogenic and lymphangiogenic 
activity, peritumoral invasion of lymphatics and blood vessels and peritumoral 
lymphocytic infiltration[86]. In their retrospective study, Braman et al[87] demonstrated 
that with combined intratumoral and peritumoral radiomics approach, analyzing 
textural features extracted from T1-weighted contrast-enhanced MRI scans, it is 
possible to successfully predict pCR to NST from pretreatment breast DCE-MRI, both 
with and without a priori knowledge of receptor status. Later, the same authors, 
confirmed that an intratumoral and peritumoral imaging signature was capable to 
predict the response to preroperative targeted therapy in another retrospective study 
conducted on HER2-positive breast cancers, highlighting again the relationship 
between immune-response and the peritumoral environment[50]. Zhou et al[88] 
investigated the role of wavelet-transformed textures, which can provide compre-
hensive spatial, and frequency distributions for characterizing intratumoral and 
peritumoral regions in terms of low and high frequency signals. In their study 
wavelet-transformed textures outperformed volumetric and peripheral textures in the 
radiomics MRI prediction of pCR to NST for patients with locally advanced breast 
cancers.

DWI is considerably sensitive to NST-induced intratumoral changes, resulting in an 
additional value when associated to contrast-enhanced MRI in radiomics models. 
Radiomics signatures combining multi-parametric MRI achieved a good performance 
for predicting complete response in BC, in both Luminal and TN cancers, in the study 
conducted by Liu et al[89]. With a radiomics signature, combining radiomics features 
from DCE-MRI and ADC maps, Chen et al[90] obtained similar results, with a higher 
performance than the models with DCE-MRI or ADC maps alone, in predicting PCR.

Sentinel lymph node biopsy has replaced axillary lymph node dissection in patients 
who convert to node-negative status after NST. Several studies assessed whether 
breast MRI can be used to assess lymph node residual metastasis after NST allowing 
breast cancer patients to avoid unnecessary axillary surgery. In the study of Hyun 
et al[91], DCE-MRI was able to rule out the presence of advanced nodal disease with a 
NPV of 94% in NAC patients. Nevertheless, in the work of Mattingly et al[92], post-
treatment MRI and surgical pathologic findings revealed a slight strength of 
agreement and DCE-MRI revealed specificity and sensitivity of 63% and 55%, 
respectively. Ha et al[93] found different results, with sensitivity and specificity of 57% 
and 72%, with positive estrogen receptor status significantly associated with 
misdiagnosis by MRI. These latter evidences, revealing that post-treatment MRI 
findings were not exactly predictive of residual axillary disease, suggest to use DCE-
MRI results with caution when planning treatment and to avoid omitting sentinel 
lymph node biopsy or axillary lymph node dissection for staging in women 
determined to be node-positive pre-treatment. In this setting, convolutional neural 
networks (CNN), were employed to predict the likelihood of axillary LN metastasis 
and NAC treatment response, using MRI datasets prior to initiation of NAC in few 
studies with controversal results[79,94-96]. Ha et al[96] reported an accuracy of 83% with 
AUC of 0.93 for CNN in predicting axillary response. Nevertheless, in the study of 
Golden et al[79] the GLCM texture features extracted from pre- chemotherapy MRI was 
able to predict pCR and residual lymph node metastasis with an AUC of 0.68.
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Prognosis
Radiomics models demonstrated promising results in predicting cancer prognosis of 
patients with tumors of various organs, reporting that several texture features, such as 
uniformity and entropy, can be used in risk stratification[15,97,98]. By using the genomic-
based scores for the multigene assays MammaPrint, Oncotype DX, and PAM50 as the 
reference standards, Li et al[99] demonstrated that breast MRI radiomics show a 
promising role for image-based phenotyping in assessing the risk of recurrence. 
Noteworthy, enhancement texture features were consistently associated with 
recurrence score, highlighting how microvascular density and/or central necrosis, 
responsible of tumor heterogeneity, play an important biological role in recurrence. 
Other authors confirmed these results, finding that tumors with higher entropy on T2-
weighted images and lower entropy on T1w subtraction images were associated with 
poorer recurrence-free survival[15]. A CNN developed by Ha et al[100] was able to predict 
with an accuracy of up to 84%, the Oncotype Dx Recurrence Score (ODRS), an 
expensive but validated recurrence score, recommended by American Society of 
Clinical Oncology guidelines to decide on adjuvant systemic chemotherapy in 
ER+/HER-/node negative lesions[101]. Nevertheless, this result was not confirmed by 
Saha et al[102], who tested two machine learning-based models, finding only a moderate 
association between imaging and ODRS. The study of Park et al[103] was the first 
performed, using ROIs drawn on entire tumors, to demonstrate that a radiomics 
signature can estimate survival in patients with BC. They generated a multivariate 
feature vector based on morphologic, histogram texture, and GLCM texture features to 
stratify patients at risk for recurrence. They also showed that a combined radiomics-
clinical-pathological nomogram achieved superior prognostic performance than either 
the Rad-score-only or the clinico-pathological nomograms. Nevertheless, controversial 
results were recently reported applying radiomics models to predict prognosis for TN 
(triple-negative) breast cancers[104,105]. While in the study conducted by Kim et al[105] the 
radiomics score was significantly associated with worse disease free survival, but 
comparable in performance with the clinico-pathologic model, in both the training and 
validation sets, the work performed by Koh et al[104] showed that their Radiomics model 
was able to predict systemic recurrence better than the Clinical model only in the 
training set.

LIMITATIONS AND FUTURE APPLICATIONS
Radiomics techniques require further studies, as they have not yet achieved wide-
spread, demonstrated and accepted, clinical relevance and applicability. The main 
challenge is the standardization of MRI acquisition protocol, method of segmentation, 
feature extraction and selection, or classification. Another hurdle is the current lack of 
evidences regarding reproducibility of feature extraction systems and radiomics 
models. Furthermore, most studies are retrospectively designed, with relatively small 
sample size and wide methodological differences. Larger and prospective studies, 
with standardized radiomics methods are needed to prove and improve potential 
clinical applications of radiomics in BC. Further studies are necessary to prove and 
understand the relationships between image-derived texture features and 
histopathologic or even genomic expression data. The main future directions include 
the correlation between proteomic and genomic tumor analyses with radiomics 
features, through the field of radiogenomics. These last investigations could have a 
potential role in explaining tumor biology, contributing in the main future objective of 
personalized diagnosis and treatment of breast cancer patients.
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