17 research outputs found

    Response to Teladorsagia circumcincta infection in Scottish Blackface lambs with divergent phenotypes for nematode resistance

    Get PDF
    peer-reviewedThe objective of this study was to identify Scottish Blackface lambs that were at the extremes of the spectrum of resistance to gastrointestinal nematodes and characterise their response to an experimental nematode challenge. Lambs (n = 90) were monitored for faecal egg count (FEC) (2 samples from each of 2 independent natural infections). The most resistant (n = 10) and susceptible (n = 10) individuals were selected and challenged with 30,000 Teladorsagia circumcincta larvae (L3) at 9 months of age. Response to infection was monitored by measuring FEC, plasma pepsinogen, serum antibodies against nematode larval antigens and haematology profile, until necropsy at 71 days post infection. Worm burden, worm fecundity and the level of anti-nematode antibodies in abomasal mucosa were determined at necropsy. FEC was consistently higher in susceptible animals (P < 0.05), validating the selection method. Worm fecundity was significantly reduced in resistant animals (P = 0.03). There was also a significant correlation (r = 0.88; P < 0.001) between the number of adult worms and FEC at slaughter. There was no effect of phenotype (resistance/susceptibility) on plasma pepsinogen or on haematology profile. Phenotype had a significant effect on the level of anti-nematode IgA antibodies in serum (P < 0.01), reflecting a higher peak in resistant animals at day 7 post infection. It is concluded that significant variation in the response to gastrointestinal nematode challenge exists within the Scottish Blackface population with resistant animals displaying significantly lower FEC, lower worm fecundity and higher concentration of anti-nematode IgA antibodies in serum.Kathryn McRae was supported by a Teagasc Walsh fellowship and the Allan and Grace Kay Overseas Scholarship

    Transcriptional profiling of the ovine abomasal lymph node reveals a role for timing of the immune response in gastrointestinal nematode resistance

    Get PDF
    Gastrointestinal nematodes are a serious cause of morbidity and mortality in grazing ruminants. The major ovine defence mechanism is acquired immunity, with protective immunity developing over time in response to infection. Nematode resistance varies both within and between breeds and is moderately heritable. A detailed understanding of the genes and mechanisms involved in protective immunity, and the factors that regulate this response, is required to aid both future breeding strategies and the development of effective and sustainable nematode control methods. The aim of this study was to compare the abomasal lymph node transcriptome of resistant and susceptible lambs in order to determine biological processes differentially expressed between resistant and susceptible individuals. Scottish Blackface lambs, with divergent phenotypes for resistance, were challenged with 30,000 Teladorsagia circumcincta larvae (L3), and abomasal lymph nodes recovered at 7 and 14 days post-infection (dpi). High-throughput sequencing of cDNA from the abomasal lymph node was used to quantitatively sample the transcriptome with an average of 32 million reads per sample. A total of 194 and 144 genes were differentially expressed between resistant and susceptible lambs at 7 and 14 dpi respectively. Differentially expressed networks and biological processes were identified using Ingenuity Pathway Analysis. Genes involved in the inflammatory response, attraction of T lymphocytes and binding of leukocytes were more highly expressed in resistant animals at 7 dpi and in susceptible animals at 14 dpi indicating that resistant animals respond to infection earlier than susceptible animals. Twenty-four Single Nucleotide Polymorphisms (SNP) within 11 differentially expressed genes, were tested for association with gastrointestinal nematode resistance in the Scottish Blackface lambs. Four SNP, in 2 genes (SLC30A2 and ALB), were suggestively associated with faecal egg count. In conclusion, a large number of genes were differentially expressed in the abomasal lymph node of resistant and susceptible lambs responding to gastrointestinal nematode challenge. Resistant Scottish Blackface lambs appear to generate an earlier immune response to T. circumcincta. In susceptible lambs this response appears to be delayed. SNP in 2 differentially expressed genes were suggestively associated with faecal egg count indicating that differentially expressed genes may be considered candidate loci for mediating nematode resistance

    Variation in the Ovine Abomasal Lymph Node Transcriptome between Breeds Known to Differ in Resistance to the Gastrointestinal Nematode

    Get PDF
    Texel lambs are known to be more resistant to gastrointestinal nematode (GIN) infection than Suffolk lambs, with a greater ability to limit infection. The objectives of this study were to: 1) profile the whole transcriptome of abomasal lymph node tissue of GIN-free Texel and Suffolk lambs; 2) identify differentially expressed genes and characterize the immune-related biological pathways and networks associated with these genes. Abomasal lymph nodes were collected from Texel (n = 6) and Suffolk (n = 4) lambs aged 19 weeks that had been GIN-free since 6 weeks of age. Whole transcriptome profiling was performed using RNA-seq on the Illumina platform. At the time of conducting this study, a well annotated Ovine genome was not available and hence the sequence reads were aligned with the Bovine (UMD3.1) genome. Identification of differentially expressed genes was followed by pathway and network analysis. The Suffolk breed accounted for significantly more of the differentially expressed genes, (276 more highly expressed in Suffolk v 162 in Texel; P < 0.001). The four most significant differentially expressed pathways were all related to immunity and were classified as: Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses, Activation of IRF by Cytosolic Pattern Recognition Receptors, Role of RIG-I-like Receptors in Antiviral Innate Immunity, and Interferon Signaling. Of significance is the fact that all of these four pathways were more highly expressed in the Suffolk. These data suggest that in a GIN-free environment, Suffolk lambs have a more active immune profile relative to the Texel: this immune profile may contribute to the poorer efficiency of response to a GIN challenge in the Suffolk breed compared to the Texel breed

    Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei

    Get PDF
    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites

    The glycosylphosphatidylinositol - phospholipase C (GPI-PLC) in bloodstream forms of Trypanosoma brucei

    No full text
    THESIS 8475The localization of the GPI-PLC in bloodstream form trypanosomes was investigated using confocal microscopy and surface labelling techniques, namely biotinylation and iodination. The confocal data indicate that the GPI-PLC is exclusively located on the flagellar membrane rather than the pelicular membrane of the cell body or the flagellar pocket membrane. This location places the GPI-PLC and the VSG on the same side of the plasma membrane bilayer covering the flagellum, thereby indicating that both enzyme and substrate reside in close proximity making the cleavage reaction of the GPI-PLC on the GPI anchor a much more feasible process than previously thought. The GPI-PLC did not co-localize with the para-flagellar rod, a large structure found within the flagellum of bloodstream form trypanosomes. The GPI-PLC was found to lie closer to the cell body than the paraflagellar rod

    The glycosylphosphatidylinositol-PLC in Trypanosoma brucei forms a linear array on the exterior of the flagellar membrane before and after activation.

    No full text
    Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC

    A nationwide survey of anthelmintic treatment failure on sheep farms in ireland

    Get PDF
    Background: Between 2013 and 2015 the Department of Agriculture, Food and the Marine (DAFM) administered a sheep technology adoption programme (STAP), with the aim of increasing profitability on Irish sheep farms by encouraging the adoption of best management practices. One of the options available to STAP participants was to test the efficacy of the anthelmintic treatment (benzimadazole, levamisole or macrocyclic lactone) used in their flocks by means of a drench test, which is a modification of the faecal egg count reduction test; individual faecal samples were collected from the same group of lambs before and after anthelmintic treatment, the number of eggs present pre and post treatment was subsequently determined from a pooled sample. Results: In total, 4211 drench tests were undertaken by farmers during the 3 years of the programme. Information on the anthelmintic product used was available for 3771 of these tests; anthelmintics from the classes benzimidazole (BZ), levamisole (LV) and macrocyclic lactone (ML) (avermectins (AVM) plus moxidectin (MOX)) were used in 42.0%, 23.4% and 32.5% of tests, respectively. The remaining 2.1% of tests involved an inappropriate product. The efficacy of treatment against 'other trichostrongyles' (excluding Nematodirus spp and Strongyloides papillosus.) could be established for 1446 tests, and 51% of these tests were considered effective (i.e. a reduction of faecal egg count (FEC) &amp;gt;= 95%). There was a significant difference among the drug groups in efficacy; 31.5%, 51.9%, 62.5% and 84% of treatments were considered effective for BZ, LV, AVM, MOX, respectively. The efficacy of treatment against Nematodirus spp. could be established for 338 tests and the overall efficacy was 96%. Conclusions: Due to the significant difference among the anthelmintic classes for efficacy against 'other trichostrongyles' along with the high level of efficacy against Nematodirus spp., a genus for which anthelmintic resistance is rarely reported, it is concluded that anthelmintic resistance was responsible for the majority of the anthelmintic treatment failures observed
    corecore