839 research outputs found

    Origin of the different conductive behavior in pentavalent-ion-doped anatase and rutile TiO2_2

    Full text link
    The electronic properties of pentavalent-ion (Nb5+^{5+}, Ta5+^{5+}, and I5+^{5+}) doped anatase and rutile TiO2_2 are studied using spin-polarized GGA+\emph{U} calculations. Our calculated results indicate that these two phases of TiO2_2 exhibit different conductive behavior upon doping. For doped anatase TiO2_2, some up-spin-polarized Ti 3\emph{d} states lie near the conduction band bottom and cross the Fermi level, showing an \emph{n}-type half-metallic character. For doped rutile TiO2_2, the Fermi level is pinned between two up-spin-polarized Ti 3\emph{d} gap states, showing an insulating character. These results can account well for the experimental different electronic transport properties in Nb (Ta)-doped anatase and rutile TiO2_2.Comment: 4 pages, 5 figure

    Radiocesium concentrations in wild mushrooms after the accident at the Fukushima Daiichi Nuclear Power Station: Follow-up study in Kawauchi village

    Get PDF
    Since the accident at the Chernobyl Nuclear Power Plant, it has become well known that radiocesium tends to concentrate in wild mushrooms. During the recovery process after the accident at the Fukushima Daiichi Nuclear Power Station (FDNPS), it is important to perform follow-up measurements of the activity concentrations of radiocesium in mushrooms. We evaluated the activity concentrations of the detected artificial radionuclides (radiocesium) in wild mushrooms collected from Kawauchi village, which is within 30?km of the FDNPS, in 2015, four years after the accident. We found that the radiocesium was determined in 147 of 159 mushroom samples (92.4%). Based on the average mushroom consumption of Japanese citizens (6.28?kg per year), we calculated committed effective doses ranging from <0.001 to 0.6?mSv. Although committed effective doses are relatively limited, even if residents have consumed mushrooms several times, continuous monitoring of the radiocesium in mushrooms in Fukushima is needed for sustained recovery from the nuclear disaster

    Radiocesium contamination and estimated internal exposure doses in edible wild plants in Kawauchi Village following the Fukushima nuclear disaster

    Get PDF
    Kawauchi Village, in Fukushima Prefecture, is located within a 30-km radius of the nuclear disaster site of the Fukushima Daiichi Nuclear Power Plant (FDNPP). “Sansai” (edible wild plants) in this village have been evaluated by gamma spectrometry after the residents had returned to their homes, to determine the residents’ risk of internal exposure to artificial radionuclides due to consumption of these plants. The concentrations of radiocesium (cesium-134 and cesium-137) were measured in all 364 samples collected in spring 2015. Overall, 34 (9.3%) samples exceeded the regulatory limit of 100 Bq/kg established by Japanese guidelines, 80 (22.0%) samples registered between 100 Bq/kg and 20 Bq/kg, and 250 (68.7%) registered below 20 Bq/kg (the detection limit). The internal effective doses from edible wild plants were sufficiently low (less than 1 mSv/y), at 3.5±1.2 μSv/y for males and 3.2±0.9 μSv/y for females (2.7±1.5 μSv/y for children and 3.7±0.7 μSv/y for adults in 2015). Thus, the potential internal exposure doses due to consumption of these edible wild plants were below the applicable radiological standard limits for foods. However, high radiocesium levels were confirmed in specific species, such as Eleutherococcus sciadophylloides (“Koshiabura”) and Osmunda japonica (Asian royal fern, “Zenmai”). Consequently, a need still might exist for long-term follow-up such as environmental monitoring, physical and mental support to avoid unnecessary radiation exposure and to remove anxiety about adverse health effects due to radiation. The customs of residents, especially the “satoyama” (countryside) culture of ingesting “sansai,” also require consideration in the further reconstruction of areas such as Kawauchi Village that were affected by the nuclear disaster

    CO adsorption on neutral iridium clusters

    Get PDF
    The adsorption of carbon monoxide on neutral iridium clusters in the size range of n = 3 to 21 atoms is investigated with infrared multiple photon dissociation spectroscopy. For each cluster size only a single v(CO) band is present with frequencies in the range between 1962 cm-1 (n = 8) and 1985 cm-1 (n = 18) which can be attributed to an atop binding geometry. This behaviour is compared to the CO binding geometries on clusters of other group 9 and 10 transition metals as well as to that on extended surfaces. The preference of Ir for atop binding is rationalized by relativistic effects on the electronic structure of the later 5d metals

    SNP analysis of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene by a fluorescence-adapted SSCP method

    Get PDF
    BACKGROUND: Single-nucleotide polymorphisms (SNPs) are considered to be useful polymorphic markers for genetic studies of polygenic traits. Single-stranded conformational polymorphism (SSCP) analysis has been widely applied to detect SNPs, including point mutations in cancer and congenital diseases. In this study, we describe an application of the fluorescent labeling of PCR fragments using a fluorescent-adapted primer for SSCP analysis as a novel method. METHODS: Single-nucleotide polymorphisms (SNPs) of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene were analyzed using a fluorescence-adapted SSCP method. The method was constructed from two procedures: 1) a fluorescent labeling reaction of PCR fragments using fluorescence-adapted primers in a single tube, and 2) electrophoresis on a non-denaturing polyacrylamide gel. RESULTS: This method was more economical and convenient than the single-stranded conformational polymorphism (SSCP) methods previously reported in the detection of the labeled fragments obtained. In this study, eight SNPs of the IHRP gene were detected by the fluorescence-adapted SSCP. One of the SNPs was a new SNP resulting in an amino acid substitution, while the other SNPs have already been reported in the public databases. Six SNPs of the IHRP were associated with two haplotypes. CONCLUSIONS: The fluorescence-adapted SSCP was useful for detecting and genotyping SNPs
    corecore