404 research outputs found

    CD44 acts as a signaling platform controlling tumor progression and metastasis

    Get PDF
    Members of the CD44 family of transmembrane glycoproteins emerge as major signal transduction control units. CD44 isoforms participate in several signaling pathways ranging from growth factor-induced signaling to Wnt-regulated pathways. The role of the CD44 family members in tumor progression and metastasis is most likely linked to the function of the various isoforms as signaling hubs. Increasing evidence suggests that these proteins are not solely cancer stem cell (CSC) markers but are directly involved in tumor and metastasis initiation. It is foreseeable that a link between the expression of CD44 isoforms in CSCs and their function as signaling regulators will be drawn in a near future

    CD44 regulates Wnt signaling at the level of LRP6

    Get PDF

    Plasticity in Colorectal Cancer: Why Cancer Cells Differentiate

    Get PDF
    The cancer stem cell hypothesis poses that the bulk of differentiated cells are non-tumorigenic and only a subset of cells with self-renewal capabilities drive tumor initiation and progression. This means that differentiation could have a tumor-suppressive effect. Accumulating evidence shows, however, that in some solid tumors, like colorectal cancer, such a hierarchical organization is necessary. The identification of Lgr5 as a reliable marker of normal intestinal epithelial stem cells, together with strategies to trace cell lineages within tumors and the possibility to selectively ablate these cells, have proven the relevance of Lgr5+ cells for cancer progression. On the contrary, the role of Lgr5− cells during this process remains largely unknown. In this review, we explore available evidence pointing towards possible selective advantages of cancer cells organized hierarchically and its resulting cell heterogeneity. Clear evidence of plasticity between cell states, in which loss of Lgr5+ cells can be replenished by dedifferentiation of Lgr5− cells, shows that cell hierarchies could grant adaptive traits to tumors upon changing selective pressures, including those derived from anticancer therapy, as well as during tumor progression to metastasis

    BeadNet: Deep learning-based bead detection and counting in low-resolution microscopy images

    Get PDF
    Motivation An automated counting of beads is required for many high-throughput experiments such as studying mimicked bacterial invasion processes. However, state-of-the-art algorithms under- or overestimate the number of beads in low-resolution images. In addition, expert knowledge is needed to adjust parameters. Results In combination with our image labeling tool, BeadNet enables biologists to easily annotate and process their data reducing the expertise required in many existing image analysis pipelines. BeadNet outperforms state-of-the-art-algorithms in terms of missing, added and total amount of beads. Availability and implementation BeadNet (software, code and dataset) is available at https://bitbucket.org/t_scherr/beadnet. The image labeling tool is available at https://bitbucket.org/abartschat/imagelabelingtool

    Alternative splicing downstream of EMT enhances phenotypic plasticity and malignant behavior in colon cancer

    Get PDF
    Phenotypic plasticity allows carcinoma cells to transiently acquire the quasi-mesenchymal features necessary to detach from the primary mass and proceed along the invasion-metastasis cascade. A broad spectrum of epigenetic mechanisms is likely to cause the epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions necessary to allow local dissemination and distant metastasis. Here, we report on the role played by alternative splicing (AS) in eliciting phenotypic plasticity in epithelial malignancies with focus on colon cancer. By taking advantage of the coexistence of subpopulations of fully epithelial (EpCAM(hi)) and quasi-mesenchymal and highly metastatic (EpCAM(lo)) cells in conventional human cancer cell lines, we here show that the differential expression of ESRP1 and other RNA-binding proteins (RBPs) downstream of the EMT master regulator ZEB1 alters the AS pattern of a broad spectrum of targets including CD44 and NUMB, thus resulting in the generation of specific isoforms functionally associated with increased invasion and metastasis. Additional functional and clinical validation studies indicate that both the newly identified RBPs and the CD44s and NUMB2/4 splicing isoforms promote local invasion and distant metastasis and are associated with poor survival in colon cancer. The systematic elucidation of the spectrum of EMT-related RBPs and AS targets in epithelial cancers, apart from the insights in the mechanisms underlying phenotypic plasticity, will lead to the identification of novel and tumor-specific therapeutic targets
    • 

    corecore