992 research outputs found

    Radiation-reaction-induced evolution of circular orbits of particles around Kerr Black Holes

    Get PDF
    It is demonstrated that, in the adiabatic approximation, non-Equatorial circular orbits of particles in the Kerr metric (i.e. orbits of constant Boyer-Lindquist radius) remain circular under the influence of gravitational radiation reaction. A brief discussion is given of conditions for breakdown of adiabaticity and of whether slightly non-circular orbits are stable against the growth of eccentricity.Comment: 23 pages. Revtex 3.0. Inquiries to [email protected]

    The Ori-Soen time machine

    Get PDF
    Ori and Soen have proposed a spacetime which has closed causal curves on the boundary of a region of normal causality, all within a region where the weak energy condition (positive energy density) is satisfied. I analyze the causal structure of this spacetime in some simplified models, show that the Cauchy horizon is compactly generated, and argue that any attempt to build such a spacetime with normal matter might lead to singular behavior where the causality violation would otherwise take place.Comment: 5 pages, RevTeX, 7 figures with epsf, miscellaneous clarifications in v2, minor updates to correspond to version to appear in PR

    Cauchy horizon singularity without mass inflation

    Full text link
    A perturbed Reissner-Nordstr\"om-de Sitter solution is used to emphasize the nature of the singularity along the Cauchy horizon of a charged spherically symmetric black hole. For these solutions, conditions may prevail under which the mass function is bounded and yet the curvature scalar RαβγδRαβγδR_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta} diverges.Comment: typeset in RevTex, 13 page

    Experimental Investigation of Gully Formation Under Low Pressure and Low Temperature Conditions

    Get PDF
    International audienceIntroduction: A large morphological diversity of gullies is observed on Earth and on Mars. Debris flow – a non-newtonian flow comprising a sediment-water mix – is a common process attributed to gully formation on both planets [1, 2]. Many variables can influence the morphology of debris flows (grainsizes, discharge , slope, soil moisture, etc) and their respective influences are difficult to disentangle in the field. Furthermore effects specific to the martian environment have not yet been explored in detail. Some preliminary laboratory simulations have already been performed that isolate some of these variables. Cold room experiments [3] were already perfomed to test the effect of a melted surface layer on the formation of linear gullies over sand dunes. Low pressure experiments [4] were performed to test the effect of the atmospheric pressure on erosional capacity and runout distance of the flows. Our aim is to develop a new set of experiments both under Martian atmospheric pressure and terrestrial atmospheric pressure in order to reproduce the variability of the observed morphologies under well constrained experimental conditions

    Disentangling the Origin and Heating Mechanism of Supernova Dust: Late-Time Spitzer Spectroscopy of the Type IIn SN 2005ip

    Get PDF
    This paper presents late-time near-infrared and {\it Spitzer} mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of ∼5×10−4 \sim 5 \times 10^{-4}~\msolar, originates from newly formed dust in the ejecta, or possibly the cool, dense shell, and is continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell ∼0.01−0.05\sim 0.01 - 0.05~\msolar~by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He 1 1.083 \micron~P Cygni profile indicates a progenitor eruption likely formed this dust shell ∼\sim100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star.Comment: 12 pages, 10 figures, Accepted to Ap

    Ordinary Economic Voting Behavior in the Extraordinary Election of Adolf Hitler

    Get PDF
    The enormous Nazi voting literature rarely builds on modern statistical or economic research. By adding these approaches, we find that the most widely accepted existing theories of this era cannot distinguish the Weimar elections from almost any others in any country. Via a retrospective voting account, we show that voters most hurt by the depression, and most likely to oppose the government, fall into separate groups with divergent interests. This explains why some turned to the Nazis and others turned away. The consequences of Hitler's election were extraordinary, but the voting behavior that led to it was no

    Late-Time Circumstellar Interaction in a Spitzer Selected Sample of Type IIn Supernovae

    Get PDF
    Type IIn supernovae (SNe IIn) are a rare (< 10%) subclass of core-collapse SNe that exhibit relatively narrow emission lines from a dense, pre-existing circumstellar medium (CSM). In 2009, a warm Spitzer survey observed 30 SNe IIn discovered in 2003 - 2008 and detected 10 SNe at distances out to 175 Mpc with unreported late-time infrared emission, in some cases more than 5 years post-discovery. For this single epoch of data, the warm-dust parameters suggest the presence of a radiative heating source consisting of optical/X-ray emission continuously generated by ongoing CSM interaction. Here we present multi-wavelength follow-up observations of this sample of 10 SNe IIn and the well-studied Type IIn SN 2010jl. A recent epoch of Spitzer observations reveals ongoing mid-infrared emission from nine of the SNe in this sample. We also detect three of the SNe in archival WISE data, in addition to SNe 1987A, 2004dj, and 2008iy. For at least five of the SNe in the sample, optical and/or X-ray emission confirms the presence of radiative emission from ongoing CSM interaction. The two Spitzer nondetections are consistent with the forward shock overrunning and destroying the dust shell, a result that places upper limits on the dust-shell size. The optical and infrared observations confirm the radiative heating model and constrain a number of model parameters, including progenitor mass-loss characteristics. All of the SNe in this sample experienced an outburst on the order of tens to hundreds of years prior to the SN explosion followed by periods of less intense mass loss. Although all evidence points to massive progenitors, the variation in the data highlights the diversity in SN IIn progenitor evolution. While these observations do not identify a particular progenitor system, they demonstrate that future, coordinated, multi-wavelength campaigns can constrain theoretical mass-loss models.Comment: 10 pages, 6 figures, accepted to AJ (with comments
    • …
    corecore