38 research outputs found

    Study of the Optical Properties of Complex Ice Crystal Aggregates. Application to the remote sensing of dry and mixed-phase snowfall

    Get PDF
    Snowfall is a prominent component of the Earth’s hydrologic cycle. Global observations of snowfall are essential for the monitoring of the status of the Earth system, and because of their wide coverage, nowadays, remote sensing instruments are fundamental tools in the measurement of precipitation. The principal uncertainty in the interpretation of radar data are the scattering properties of the hydrometeors which are strictly connected to their microphysical characteristics. The presented study propose a comprehensive approach that analyze the all snow physical characteristics: single particle modeling, snowfall automatic microphysical retrieval, scattering simulations and remote sensing. A state of the art snow aggregation algorithm (SAM) has been implemented to model the snowflake accurate morphology, simulating the basic physical governing phenomena of snow formation and growth. The algorithm has been further extended to model the initial stage of snowflake melting. The snowflake models are used as input of computer scattering simulations. The analysis of the radiative properties obtained with the spherical models and the complex aggregated particles produced by SAM shows that the former are inadequate to represent the scattering characteristics of large aggregated particles. An innovative methodology has been developed to automatically estimate the mean snow mass-size relation using particle size distribution, velocity fits, snow accumulation and Rayleigh radar reflectivity. The radar reflectivities at Ka and W band simulated with T-matrix spheroidal models and using the retrieved mass-dimensional relation cannot match the observation. When the same simulation is performed with the usage of DDA scattering calculations the results reproduce better the observed radar reflectivities. This outcome gives validity to both the microphysical and the scattering model. A multi-perspective approach, that simultaneously include the microphysical and scattering simulation of snowflake properties, is the way forward to solve the uncertainties related to snowfall remote sensing

    Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland

    Get PDF
    In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. A relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies, but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass-dimensional relations of snow are retrieved. For snow rates more than 0.2 mm h(-1), a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed.Peer reviewe

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    The role of immune suppression in COVID-19 hospitalization: clinical and epidemiological trends over three years of SARS-CoV-2 epidemic

    Get PDF
    Specific immune suppression types have been associated with a greater risk of severe COVID-19 disease and death. We analyzed data from patients >17 years that were hospitalized for COVID-19 at the “Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico” in Milan (Lombardy, Northern Italy). The study included 1727 SARS-CoV-2-positive patients (1,131 males, median age of 65 years) hospitalized between February 2020 and November 2022. Of these, 321 (18.6%, CI: 16.8–20.4%) had at least one condition defining immune suppression. Immune suppressed subjects were more likely to have other co-morbidities (80.4% vs. 69.8%, p < 0.001) and be vaccinated (37% vs. 12.7%, p < 0.001). We evaluated the contribution of immune suppression to hospitalization during the various stages of the epidemic and investigated whether immune suppression contributed to severe outcomes and death, also considering the vaccination status of the patients. The proportion of immune suppressed patients among all hospitalizations (initially stable at <20%) started to increase around December 2021, and remained high (30–50%). This change coincided with an increase in the proportions of older patients and patients with co-morbidities and with a decrease in the proportion of patients with severe outcomes. Vaccinated patients showed a lower proportion of severe outcomes; among non-vaccinated patients, severe outcomes were more common in immune suppressed individuals. Immune suppression was a significant predictor of severe outcomes, after adjusting for age, sex, co-morbidities, period of hospitalization, and vaccination status (OR: 1.64; 95% CI: 1.23–2.19), while vaccination was a protective factor (OR: 0.31; 95% IC: 0.20–0.47). However, after November 2021, differences in disease outcomes between vaccinated and non-vaccinated groups (for both immune suppressed and immune competent subjects) disappeared. Since December 2021, the spread of the less virulent Omicron variant and an overall higher level of induced and/or natural immunity likely contributed to the observed shift in hospitalized patient characteristics. Nonetheless, vaccination against SARS-CoV-2, likely in combination with naturally acquired immunity, effectively reduced severe outcomes in both immune competent (73.9% vs. 48.2%, p < 0.001) and immune suppressed (66.4% vs. 35.2%, p < 0.001) patients, confirming previous observations about the value of the vaccine in preventing serious disease

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Assessing the uncertainties of the discrete dipole approximation in case of melting ice particles

    No full text
    We studied the applicability of the Discrete Dipole Approximation (DDA) for scattering by partially melted snowflakes in the microwave region. The DDA accuracy in the case of a liquid water coated ice sphere was tested at various particle sizes, water layer thicknesses, frequencies and DDA grid resolutions. We found that the backscattering and absorption cross section show the largest biases with respect to the Mie reference. The highest discrepancies were found for the thinnest water coating and the lowest frequency. We applied a previously published method to separately analyze the errors due to the representation of particle shape and discretization. The accuracy of the DDA seems to decrease particularly when only a single dipole is used to represent some structural element of the target with large refractive index. A similar behavior was also found by testing the variation of the scattering properties of complex shaped melting snowflakes at different grid resolutions. From both experiments we conclude that single isolated water dipoles should be avoided when modeling the scattering properties of melting snowflakes in the microwave using DDA. Although we found that a stability criterion which is commonly used for pure ice particles is not sufficient for melting particles, the DDA results in general converge to the exact Mie solution when shape and discretization errors are reduced by using a refined grid. (C) 2018 Elsevier Ltd. All rights reserved

    Analytic characterization of random errors in spectral dual-polarized cloud radar observations

    No full text
    This study presents the first-ever complete characterization of random errors in dual-polarimetric spectral observations of meteorological targets by cloud radars. The characterization is given by means of mathematical equations for joint probability density functions (PDFs) and error covariance matrices. The derived equations are checked for consistency using real radar measurements. One of the main conclusions of the study is that the convenient representation of spectral polarimetric measurements including differential reflectivity Z(DR), correlation coefficient rho(HV), and differential phase Phi(DP) is not suited for the proper characterization of the error covariance matrix. This is because the aforementioned quantities are complex, non-linear functions of the radar raw data, and thus their error covariance matrix is commonly derived using simplified linear relations and by neglecting the correlation of errors. This study formulates the spectral polarimetric measurements in terms of a different set of quantities that allows for a proper analytic treatment of their error covariance matrix. The results given in this study allow for utilization of spectral polarimetric measurements for advanced meteorological applications, among which are variational retrieval techniques, data assimilation, and sensitivity analysis

    Improving the representation of aggregation in a two-moment microphysical scheme with statistics of multi-frequency Doppler radar observations

    Get PDF
    Aggregation is a key microphysical process for the formation of precipitable ice particles. Its theoretical description involves many parameters and dependencies among different variables that are either insufficiently understood or difficult to accurately represent in bulk microphysics schemes. Previous studies have demonstrated the valuable information content of multi-frequency Doppler radar observations to characterize aggregation with respect to environmental parameters such as temperature. Comparisons with model simulations can reveal discrepancies, but the main challenge is to identify the most critical parameters in the aggregation parameterization, which can then be improved by using the observations as constraints. In this study, we systematically investigate the sensitivity of physical variables, such as number and mass density, as well as the forward-simulated multi-frequency and Doppler radar observables, to different parameters in a two-moment microphysics scheme. Our approach includes modifying key aggregation parameters such as the sticking efficiency or the shape of the size distribution. We also revise and test the impact of changing functional relationships (e.g., the terminal velocity-size relation) and underlying assumptions (e.g., the definition of the aggregation kernel). We test the sensitivity of the various components first in a single-column snowshaft model, which allows fast and efficient identification of the parameter combination optimally matching the observations. We find that particle properties, definition of the aggregation kernel, and size distribution width prove to be most important, while the sticking efficiency and the cloud ice habit have less influence. The setting which optimally matches the observations is then implemented in a 3D model using the identical scheme setup. Rerunning the 3D model with the new scheme setup for a multi-week period revealed that the large overestimation of aggregate size and terminal velocity in the model could be substantially reduced. The method presented is expected to be applicable to constrain other ice microphysical processes or to evaluate and improve other schemes
    corecore