7 research outputs found

    Droplet Digital PCR combined with minisequencing, a new approach to analyze fetal DNA from maternal blood: application to the non-invasive prenatal diagnosis of achondroplasia.

    Get PDF
    International audienceBackground - Achondroplasia is generally detected by abnormal prenatal ultrasound findings in the third trimester of pregnancy and then confirmed by molecular genetic testing of fetal genomic DNA obtained by aspiration of amniotic fluid. This invasive procedure presents a small but significant risk for both the fetus and mother. Therefore, non-invasive procedures using cell-free fetal DNA in maternal plasma have been developed for the detection of the fetal achondroplasia mutations. Methods - To determine whether the fetus carries the de novo mis-sense genetic mutation at nucleotide 1138 in FGFR3 gene involved in >99% of achondroplasia cases, we developed two independent methods: digital-droplet PCR combined with minisequencing, which are very sensitive methods allowing detection of rare alleles. Results - We collected 26 plasmatic samples from women carrying fetus at risk of achondroplasia and diagnosed to date a total of five affected fetuses in maternal blood. The sensitivity and specificity of our test are respectively 100% [95% confidence interval, 56.6-100%] and 100% [95% confidence interval, 84.5-100%]. Conclusions - This novel, original strategy for non-invasive prenatal diagnosis of achondroplasia is suitable for implementation in routine clinical testing and allows considering extending the applications of these technologies in non-invasive prenatal diagnosis of many other monogenic diseases. © 2016 John Wiley & Sons, Ltd

    Custom oligonucleotide array-based CGH: a reliable diagnostic tool for detection of exonic copy-number changes in multiple targeted genes

    Get PDF
    International audiencehe frequency of disease-related large rearrangements (referred to as copy-number mutations, CNMs) varies among genes, and search for these mutations has an important place in diagnostic strategies. In recent years, CGH method using custom-designed high-density oligonucleotide-based arrays allowed the development of a powerful tool for detection of alterations at the level of exons and made it possible to provide flexibility through the possibility of modeling chips. The aim of our study was to test custom-designed oligonucleotide CGH array in a diagnostic laboratory setting that analyses several genes involved in various genetic diseases, and to compare it with conventional strategies. To this end, we designed a 12-plex CGH array (135k; 135 000 probes/subarray) (Roche Nimblegen) with exonic and intronic oligonucleotide probes covering 26 genes routinely analyzed in the laboratory. We tested control samples with known CNMs and patients for whom genetic causes underlying their disorders were unknown. The contribution of this technique is undeniable. Indeed, it appeared reproducible, reliable and sensitive enough to detect heterozygous single-exon deletions or duplications, complex rearrangements and somatic mosaicism. In addition, it improves reliability of CNM detection and allows determination of boundaries precisely enough to direct targeted sequencing of breakpoints. All of these points, associated with the possibility of a simultaneous analysis of several genes and scalability 'homemade' make it a valuable tool as a new diagnostic approach of CNMs

    Detection of TRIM32 deletions in LGMD patients analyzed by a combined strategy of CGH array and massively parallel sequencing

    No full text
    International audienceDefects in TRIM32 were reported in limb-girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathies (STM) and in Bardet-Biedl syndrome. Few cases have been described to date in LGMD2H/STM, but this gene is not systematically analysed because of the absence of specific signs and difficulties in protein analysis. By using high-throughput variants screening techniques, we identified variants in TRIM32 in two patients presenting nonspecific LGMD. We report the first case of total inactivation by homozygous deletion of the entire TRIM32 gene. Of interest, the deletion removes part of the ASTN2 gene, a large gene in which TRIM32 is nested. Despite the total TRIM32 gene inactivation, the patient does not present a more severe phenotype. However, he developed a mild progressive cognitive impairment that may be related to the loss of function of ASTN2 because association between ASTN2 heterozygous deletions and neurobehavioral disorders was previously reported. Regarding genomic characteristics at breakpoint of the deleted regions of TRIM32, we found a high density of repeated elements, suggesting a possible hotspot. These observations illustrate the importance of high-throughput technologies for identifying molecular defects in LGMD, confirm that total loss of function of TRIM32 is not associated with a specific phenotype and that TRIM32/ASTN2 inactivation could be associated with cognitive impairment
    corecore