18 research outputs found

    The large tsunami of 26 December 2004: Field observations and eyewitnesses accounts from Sri Lanka, Maldives Is. and Thailand

    Get PDF
    Abstract Post-event field surveys were conducted and measurements were taken in Sri Lanka and Maldives about two weeks after the catastrophic Indian Ocean tsunami of 26 December 2004. The measurements taken were cross-checked after interviewing with local people. In the southwest, south and east coastal zones of Sri Lanka maximum water levels ranging from h = 3 m to h = 11 m a.m.s.l. were estimated. The highest values observed were in the south of the island: Galle h ∼ 10 m, Hambantota h ∼ 11m. Maximum inundation of d ∼ 2 km was observed in Hambantota. The heavy destruction and thousands of victims caused in coastal communities, buildings and infrastructure, like railways and bridges, is attributed not only to physical parameters, like the strength of the tsunami hydrodynamic flow, coastal geomorphology and the wave erosional action in soil, but also to anthropogenic factors including the increased vulnerability of the non-RC buildings and the high population density. Local people usually described the tsunami as a series of three main waves. The leading wave phase was only a silent sea level rise of h ≤ 1.5 m and d ≤ 150 m, while the second wave was the strongest one. The first two waves occurred between 09:00 and 09:30 local time, depending on the locality. It is well documented that near Galle, southern part, the strong wave arrived at 09:25:30. In the west coast the third wave was a late arrival which possibly represents reflection phases. In Maldives, three waves were also reported to arrive between 09:00 and 09:30 local time. Maximum water level was only h ∼ 3 m in Laamu Atoll, which is interpreted by the wave amplitude damping by the coral reef to the east of the island complex as well as to that the tsunami did not arrived at high tide time. Damage was observed in several islands of Maldives but this was minimal as compared to the heavy destruction observed in Sri Lanka. About 25 Greek eyewitnesses, who happened to experience the tsunami attack in Padong and Blue Lagoon Port of Phuket island as well as in Maya Bay, Phi-Phi islands, Thailand, were interviewed on the basis of a standard questionnaire. The first sea motion was a retreat of at least 100 m. Then, two main waves arrived, the first being the strong one occurring at about 09:55–10:05 local time, with h ∼ 6m in Padong causing significant destruction and human victims. The collected information clearly indicates that the tsunami propagated as the leading crest wave to the west side, e.g. in Sri Lanka and Maldives, and as the leading trough wave to the east, e.g. in Thailand

    The large tsunami of 26 December 2004: Field observations and eyewitnesses accounts from Sri Lanka, Maldives Is. and Thailand.

    No full text
    Post-event field surveys were conducted and measurements were taken in Sri Lanka and Maldives about two weeks after the catastrophic Indian Ocean tsunami of 26 December 2004. The measurements taken were cross-checked after interviewing with local people. In the southwest, south and east coastal zones of Sri Lanka maximum water levels ranging from h = 3 m to h = 11 m a.m.s.l. were estimated. The highest values observed were in the south of the island: Galle h ∼ 10 m, Hambantota h ∼ 11 m. Maximum inundation of d ∼ 2 km was observed in Hambantota. The heavy destruction and thousands of victims caused in coastal communities, buildings and infrastructure, like railways and bridges, is attributed not only to physical parameters, like the strength of the tsunami hydrodynamic flow, coastal geomorphology and the wave erosional action in soil, but also to anthropogenic factors including the increased vulnerability of the non-RC buildings and the high population density. Local people usually described the tsunami as a series of three main waves. The leading wave phase was only a silent sea level rise of h ≤ 1.5 m and d ≤ 150 m, while the second wave was the strongest one. The first two waves occurred between 09:00 and 09:30 local time, depending on the locality. It is well documented that near Galle, southern part, the strong wave arrived at 09:25:30. In the west coast the third wave was a late arrival which possibly represents reflection phases. In Maldives, three waves were also reported to arrive between 09:00 and 09:30 local time. Maximum water level was only h ∼ 3 m in Laamu Atoll, which is interpreted by the wave amplitude damping by the coral reef to the east of the island complex as well as to that the tsunami did not arrived at high tide time. Damage was observed in several islands of Maldives but this was minimal as compared to the heavy destruction observed in Sri Lanka. About 25 Greek eyewitnesses, who happened to experience the tsunami attack in Padong and Blue Lagoon Port of Phuket island as well as in Maya Bay, Phi-Phi islands, Thailand, were interviewed on the basis of a standard questionnaire. The first sea motion was a retreat of at least 100 m. Then, two main waves arrived, the first being the strong one occurring at about 09:55–10:05 local time, with h ∼ 6 m in Padong causing significant destruction and human victims. The collected information clearly indicates that the tsunami propagated as the leading crest wave to the west side, e.g. in Sri Lanka and Maldives, and as the leading trough wave to the east, e.g. in Thailand

    The East Aegean Sea strong earthquake sequence of October?November 2005: lessons learned for earthquake prediction from foreshocks

    Get PDF
    International audienceThe seismic sequence of October?November 2005 in the Samos area, East Aegean Sea, was studied with the aim to show how it is possible to establish criteria for (a) the rapid recognition of both the ongoing foreshock activity and the mainshock, and (b) the rapid discrimination between the foreshock and aftershock phases of activity. It has been shown that before the mainshock of 20 October 2005, foreshock activity is not recognizable in the standard earthquake catalogue. However, a detailed examination of the records in the SMG station, which is the closest to the activated area, revealed that hundreds of small shocks not listed in the standard catalogue were recorded in the time interval from 12 October 2005 up to 21 November 2005. The production of reliable relations between seismic signal duration and duration magnitude for earthquakes included in the standard catalogue, made it possible to use signal durations in SMG records and to determine duration magnitudes for 2054 small shocks not included in the standard catalogue. In this way a new catalogue with magnitude determination for 3027 events was obtained while the standard catalogue contains 1025 events. At least 55 of them occurred from 12 October 2005 up to the occurrence of the two strong foreshocks of 17 October 2005. This implies that foreshock activity developed a few days before the strong shocks of 17 October 2005 but it escaped recognition by the routine procedure of seismic analysis. The onset of the foreshock phase of activity is recognizable by the significant increase of the mean seismicity rate which increased exponentially with time. According to the least-squares approach the b-value of the magnitude-frequency relation dropped significantly during the foreshock activity with respect to the b-value prevailing in the declustered background seismicity. However, the maximum likelihood approach does not indicate such a drop of b. The b-value found for the aftershocks that followed the strong shock of 20 October 2005 is significantly higher than in foreshocks. The significant aftershock-foreshock difference in b-value is valid not only if the entire aftershock sequence is considered but also if only the segment of aftershocks that occurred within the first 24-h or the first 48-h after the mainshock of 20 October 2005 are taken into account. This difference in b-value should be examined further in other foreshock-aftershock sequences because it could be used as a diagnostic of the mainshock occurrence within a few hours after its generation

    Prediction of Earthquake Hazard by Hidden Markov Model (Around Bilecik, Nw Turkey)

    No full text
    Earthquakes are one of the most important natural hazards to be evaluated carefully in engineering projects, due to the severely damaging effects on human-life and human-made structures. The hazard of an earthquake is defined by several approaches and consequently earthquake parameters such as peak ground acceleration occurring on the focused area can be determined. In an earthquake prone area, the identification of the seismicity patterns is an important task to assess the seismic activities and evaluate the risk of damage and loss along with an earthquake occurrence. As a powerful and flexible framework to characterize the temporal seismicity changes and reveal unexpected patterns, Poisson hidden Markov model provides a better understanding of the nature of earthquakes. In this paper, Poisson hidden Markov model is used to predict the earthquake hazard in Bilecik (NW Turkey) as a result of its important geographic location. Bilecik is in close proximity to the North Anatolian Fault Zone and situated between Ankara and Istanbul, the two biggest cites of Turkey. Consequently, there are major highways, railroads and many engineering structures are being constructed in this area. The annual frequencies of earthquakes occurred within a radius of 100 km area centered on Bilecik, from January 1900 to December 2012, with magnitudes (M) at least 4.0 are modeled by using Poisson-HMM. The hazards for the next 35 years from 2013 to 2047 around the area are obtained from the model by forecasting the annual frequencies of M >= 4 earthquakes.WoSScopu
    corecore