153 research outputs found

    Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model

    Full text link
    We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of neuronal action potentials, in parameter regimes characterised by mixed-mode oscillations. The interspike time interval is related to the random number of small-amplitude oscillations separating consecutive spikes. We prove that this number has an asymptotically geometric distribution, whose parameter is related to the principal eigenvalue of a substochastic Markov chain. We provide rigorous bounds on this eigenvalue in the small-noise regime, and derive an approximation of its dependence on the system's parameters for a large range of noise intensities. This yields a precise description of the probability distribution of observed mixed-mode patterns and interspike intervals.Comment: 36 page

    Exponential Mixing for a Stochastic PDE Driven by Degenerate Noise

    Full text link
    We study stochastic partial differential equations of the reaction-diffusion type. We show that, even if the forcing is very degenerate (i.e. has not full rank), one has exponential convergence towards the invariant measure. The convergence takes place in the topology induced by a weighted variation norm and uses a kind of (uniform) Doeblin condition.Comment: 10 pages, 1 figur

    Convergence to equilibrium for many particle systems

    Full text link
    The goal of this paper is to give a short review of recent results of the authors concerning classical Hamiltonian many particle systems. We hope that these results support the new possible formulation of Boltzmann's ergodicity hypothesis which sounds as follows. For almost all potentials, the minimal contact with external world, through only one particle of NN, is sufficient for ergodicity. But only if this contact has no memory. Also new results for quantum case are presented

    Minimizing or Maximizing the Expected Time to Reach Zero

    Get PDF
    1 online resource (PDF, 26 pages

    On infinite-volume mixing

    Full text link
    In the context of the long-standing issue of mixing in infinite ergodic theory, we introduce the idea of mixing for observables possessing an infinite-volume average. The idea is borrowed from statistical mechanics and appears to be relevant, at least for extended systems with a direct physical interpretation. We discuss the pros and cons of a few mathematical definitions that can be devised, testing them on a prototypical class of infinite measure-preserving dynamical systems, namely, the random walks.Comment: 34 pages, final version accepted by Communications in Mathematical Physics (some changes in Sect. 3 -- Prop. 3.1 in previous version was partially incorrect

    A lower lipschitz condition for the stable subordinator

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47646/1/440_2004_Article_BF00538471.pd
    • …
    corecore