434 research outputs found

    Immunotherapy Targets in Pediatric Cancer

    Get PDF
    Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer

    Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Get PDF
    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues

    Light-Responsive Oligothiophenes Incorporating Photochromic Torsional Switches (PTS)

    Get PDF
    We present a quaterthiophene and sexithiophene that can reversibly change their effective π-conjugation length via photoexcitation. The reported compounds make use of light-responsive molecular actuators consisting of an azobenzene attached to a bithiophene unit by both direct and linker-assisted bonding. Upon exposure to 350 nm light the azobenzene undergoes trans -to- cis isomerization mechanically inducing the oligothiophene to assume a planar conformations (extended π-conjugation). Exposure to 254 nm wavelenght promotes azobenzene cis -to- trans isomerization, forcing the thiophenic backbones to twist out of planarity (confined π-conjugation). Twisted conformations are also reached by cis -to- trans thermal relaxation with rate that increases proportionally with the conjugation length of the oligothiophene moiety. The molecular conformations of quaterthiophene and sexithiophene were characterized using steady-state UV-vis, X-ray crystallography and quantum-chemical modelling. Finally, we tested the proposed light-responsive oligothiophenes into field-effect transistors to probe the photo-induced tuning of their electronic properties

    rac-4,8-Divinyl­bicyclo­[3.3.1]nonane-2,6-dione

    Get PDF
    The title compound, C13H16O2, is a chiral bicyclic structure composed of two fused cyclo­hexa­ne rings possessing both boat and chair conformations. The mol­ecules are packed in enantio­pure columns which are pairwise linked forming an overall racemic solid; within the column pairs the packing is governed by weak dipole–dipole inter­actions stemming from stacked carbonyl functionalities (COcentroid–COcentroid distance = 3.290 Å)

    A tautoleptic approach to chiral hydrogen-bonded supramolecular tubular polymers with large cavity

    Get PDF
    A new strategy towards tubular hydrogen‐bonded polymers based on the self‐assembly of isocytosine tautomers in orthogonal directions is proposed and experimentally verified, including by 1H fast magic‐angle spinning (MAS) solid‐state NMR. The molecular tubes obtained possess large internal diameter and tailor‐made outer functionalities rendering them potential candidates for a number of applications

    A Unique Human Immunoglobulin Heavy Chain Variable Domain-Only CD33 CAR for the Treatment of Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) remains a challenging pediatric and adult disease. Given the elevated expression of the CD33 antigen on leukemic blasts, therapeutic approaches to AML now feature the approved antibody drug conjugate (Mylotarg, GO) and investigational CART cell approaches incorporating CD33-binding domains derived from humanized scFvs. We designed a functional chimeric antigen receptor utilizing a human targeting sequence, derived from a heavy chain variable domain, termed CAR33VH. Lentiviral-based expression vectors which encoded CAR constructs incorporating the novel binding domain (CAR33VH), or the My96 scFv control binder (My96CAR) in frame with a CD8 hinge and transmembrane domain, a 4-1BB costimulatory domain and a CD3 zeta activation domain, were transduced into primary human CD4+ and CD8+ T cells, and CAR expression was confirmed by flow cytometry. CAR33VH, similar to My96CAR, demonstrated robust and specific cytotoxicity in short-term and long-term co-incubation killing assays against CD33+ AML lines. In overnight cytokine release assays in which CAR T cells were challenged with the CD33+ tumor cells HL-60, MOLM-14 and KG-1a, CAR33VH elicited IFN-gamma, TNF-alpha and IL-2. This was seen with CD33+ cell lines, but not when CAR T were cultured alone. Studies with a CD33− cell line engineered to stably express the full length CD33 variant 1, or the naturally occurring CD33 splice variant 2, revealed that both CAR33VH and My96CAR, target the V domain of CD33, suggesting a similar therapeutic profile. Colony-formation assays utilizing peripheral blood CD34+ hematopoietic stem cells treated with CAR33VH, My96CAR, or with an untransduced T cell control, yielded similar numbers of BFU-E erythroid and CFU-GM myeloid colonies, suggesting a lack of CAR-related overt toxicity. In an in vivo AML model, NSG mice engrafted with MOLM-14 cells stably expressing firefly luciferase, both CAR33VH and CARMy96 efficiently eliminated tumors. In conclusion, we demonstrate for the first time the feasibility and efficacy of employing human variable domain-only binder derived from a phage display library in an anti-AML CAR design. CAR33VH, comprised of a human heavy-chain variable fragment-only antigen binding domain, was efficient in tumor killing in vitro and in vivo, and showed comparable functionality to the scFv-based My96CAR

    Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI)

    Get PDF
    The gene and cell therapy field saw its first approved treatments in Europe in 2012 and the United States in 2017 and is projected to be at least a $10B USD industry by 2025. Despite this success, a massive gap exists between the companies, clinics, and researchers developing these therapeutic approaches, and their availability to the patients who need them. The unacceptable reality is a geographic exclusion of low-and middle-income countries (LMIC) in gene therapy development and ultimately the provision of gene therapies to patients in LMIC. This is particularly relevant for gene therapies to treat human immunodeficiency virus infection and hemoglobinopathies, global health crises impacting tens of millions of people primarily located in LMIC. Bridging this divide will require research, clinical and regulatory infrastructural development, capacity-building, training, an approval pathway and community adoption for success and sustainable affordability. In 2020, the Global Gene Therapy Initiative was formed to tackle the barriers to LMIC inclusion in gene therapy development. This working group includes diverse stakeholders from all sectors and has set a goal of introducing two gene therapy Phase I clinical trials in two LMIC, Uganda and India, by 2024. Here we report on progress to date for this initiative

    Immuno-transcriptomic profiling of extracranial pediatric solid malignancies.

    Full text link
    We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 pediatric extracranial solid cancer samples representing 14 diagnoses, and additionally utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, and notably are significantly predictive of survival in osteosarcoma patients. We identify potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer target. Importantly, this work provides a critical framework for immune targeting of extracranial solid tumors using parallel immuno-transcriptomic and -peptidomic approaches
    corecore