458 research outputs found

    Pattern matching and pattern discovery algorithms for protein topologies

    Get PDF
    We describe algorithms for pattern matching and pattern learning in TOPS diagrams (formal descriptions of protein topologies). These problems can be reduced to checking for subgraph isomorphism and finding maximal common subgraphs in a restricted class of ordered graphs. We have developed a subgraph isomorphism algorithm for ordered graphs, which performs well on the given set of data. The maximal common subgraph problem then is solved by repeated subgraph extension and checking for isomorphisms. Despite the apparent inefficiency such approach gives an algorithm with time complexity proportional to the number of graphs in the input set and is still practical on the given set of data. As a result we obtain fast methods which can be used for building a database of protein topological motifs, and for the comparison of a given protein of known secondary structure against a motif database

    The history of the CATH structural classification of protein domains

    Get PDF
    This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families

    Tracing Evolution Through Protein Structures: Nature Captured in a Few Thousand Folds

    Get PDF
    This article is dedicated to the memory of Cyrus Chothia, who was a leading light in the world of protein structure evolution. His elegant analyses of protein families and their mechanisms of structural and functional evolution provided important evolutionary and biological insights and firmly established the value of structural perspectives. He was a mentor and supervisor to many other leading scientists who continued his quest to characterise structure and function space. He was also a generous and supportive colleague to those applying different approaches. In this article we review some of his accomplishments and the history of protein structure classifications, particularly SCOP and CATH. We also highlight some of the evolutionary insights these two classifications have brought. Finally, we discuss how the expansion and integration of protein sequence data into these structural families helps reveal the dark matter of function space and can inform the emergence of novel functions in Metazoa. Since we cover 25 years of structural classification, it has not been feasible to review all structure based evolutionary studies and hence we focus mainly on those undertaken by the SCOP and CATH groups and their collaborators

    VarSite: disease variants and protein structure

    Get PDF
    VarSite is a web server mapping known disease-associated variants from UniProt and ClinVar, together with natural variants from gnomAD, onto protein 3D structures in the Protein Data Bank (PDB). The analyses are primarily image-based and provide both an overview for each human protein, as well as a report for any specific variant of interest. The information can be useful in assessing whether a given variant might be pathogenic or benign. The structural annotations for each position in the protein include protein secondary structure, interactions with ligand, metal, DNA/RNA, or other protein, and various measures of a given variant's possible impact on the protein's function. The 3D locations of the disease-associated variants can be viewed interactively via the 3dmol.js JavaScript viewer, as well as in RasMol and PyMOL. Users can search for specific variants, or sets of variants, by providing the DNA coordinates of the base change(s) of interest. Additionally, various agglomerative analyses are given, such as the mapping of disease and natural variants onto specific Pfam or CATH domains. The server is freely accessible to all at: https://www.ebi.ac.uk/thornton-srv/databases/VarSite. This article is protected by copyright. All rights reserved

    Functional classification of CATH superfamilies: a domain-based approach for protein function annotation

    Get PDF
    Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterised. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional subclassification of CATH superfamilies. The superfamilies are subclassified into functional families (FunFams) using a hierarchical clustering algorithm supervised by a new classification method, FunFHMMer

    An optimized TOPS+ comparison method for enhanced TOPS models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background Although methods based on highly abstract descriptions of protein structures, such as VAST and TOPS, can perform very fast protein structure comparison, the results can lack a high degree of biological significance. Previously we have discussed the basic mechanisms of our novel method for structure comparison based on our TOPS+ model (Topological descriptions of Protein Structures Enhanced with Ligand Information). In this paper we show how these results can be significantly improved using parameter optimization, and we call the resulting optimised TOPS+ method as advanced TOPS+ comparison method i.e. advTOPS+. Results We have developed a TOPS+ string model as an improvement to the TOPS [1-3] graph model by considering loops as secondary structure elements (SSEs) in addition to helices and strands, representing ligands as first class objects, and describing interactions between SSEs, and SSEs and ligands, by incoming and outgoing arcs, annotating SSEs with the interaction direction and type. Benchmarking results of an all-against-all pairwise comparison using a large dataset of 2,620 non-redundant structures from the PDB40 dataset [4] demonstrate the biological significance, in terms of SCOP classification at the superfamily level, of our TOPS+ comparison method. Conclusions Our advanced TOPS+ comparison shows better performance on the PDB40 dataset [4] compared to our basic TOPS+ method, giving 90 percent accuracy for SCOP alpha+beta; a 6 percent increase in accuracy compared to the TOPS and basic TOPS+ methods. It also outperforms the TOPS, basic TOPS+ and SSAP comparison methods on the Chew-Kedem dataset [5], achieving 98 percent accuracy. Software Availability: The TOPS+ comparison server is available at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/.This article is available through the Brunel Open Access Publishing Fun

    CATH FunFHMMer web server: protein functional annotations using functional family assignments

    Get PDF
    The widening function annotation gap in protein databases and the increasing number and diversity of the proteins being sequenced presents new challenges to protein function prediction methods. Multidomain proteins complicate the protein sequence-structure-function relationship further as new combinations of domains can expand the functional repertoire, creating new proteins and functions. Here, we present the FunFHMMer web server, which provides Gene Ontology (GO) annotations for query protein sequences based on the functional classification of the domain-based CATH-Gene3D resource. Our server also provides valuable information for the prediction of functional sites. The predictive power of FunFHMMer has been validated on a set of 95 proteins where FunFHMMer performs better than BLAST, Pfam and CDD. Recent validation by an independent international competition ranks FunFHMMer as one of the top function prediction methods in predicting GO annotations for both the Biological Process and Molecular Function Ontology. The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer

    CATH: an expanded resource to predict protein function through structure and sequence

    Get PDF
    The latest version of the CATH-Gene3D protein structure classification database has recently been released (version 4.1, http://www.cathdb.info). The resource comprises over 300 000 domain structures and over 53 million protein domains classified into 2737 homologous superfamilies, doubling the number of predicted protein domains in the previous version. The daily-updated CATH-B, which contains our very latest domain assignment data, provides putative classifications for over 100 000 additional protein domains. This article describes developments to the CATH-Gene3D resource over the last two years since the publication in 2015, including: significant increases to our structural and sequence coverage; expansion of the functional families in CATH; building a support vector machine (SVM) to automatically assign domains to superfamilies; improved search facilities to return alignments of query sequences against multiple sequence alignments; the redesign of the web pages and download site

    Extending CATH: increasing coverage of the protein structure universe and linking structure with function

    Get PDF
    CATH version 3.3 (class, architecture, topology, homology) contains 128 688 domains, 2386 homologous superfamilies and 1233 fold groups, and reflects a major focus on classifying structural genomics (SG) structures and transmembrane proteins, both of which are likely to add structural novelty to the database and therefore increase the coverage of protein fold space within CATH. For CATH version 3.4 we have significantly improved the presentation of sequence information and associated functional information for CATH superfamilies. The CATH superfamily pages now reflect both the functional and structural diversity within the superfamily and include structural alignments of close and distant relatives within the superfamily, annotated with functional information and details of conserved residues. A significantly more efficient search function for CATH has been established by implementing the search server Solr (http://lucene.apache.org/solr/). The CATH v3.4 webpages have been built using the Catalyst web framework

    The Gene3D Web Services: a platform for identifying, annotating and comparing structural domains in protein sequences

    Get PDF
    The Gene3D structural domain database provides domain annotations for 7 million proteins, based on the manually curated structural domain superfamilies in CATH. These annotations are integrated with functional, genomic and molecular information from external resources, such as GO, EC, UniProt and the NCBI Taxonomy database. We have constructed a set of web services that provide programmatic access to this integrated database, as well as the Gene3D domain recognition tool (Gene3DScan) and protein sequence annotation pipeline for analysing novel protein sequences. Example queries include retrieving all curated GO terms for a domain superfamily or all the multi-domain architectures for the human genome. The services can be accessed using simple HTTP calls and are able to return results in a range of formats for quick downloading and easy parsing, graphical rendering and data storage. Hence, they provide a simple, but flexible means of integrating domain annotations and associated data sets into locally run pipelines and analysis software. The services can be found at http://gene3d.biochem.ucl.ac.uk/WebServices/
    corecore