
Pattern matching and pattern discovery
algorithms for protein topologies

������� ��	
1∗ , David Gilbert2

1 Institute of Mathematics and Computer Science, The University of Latvia,
�
�	����
����
�������� �
����– 1459, Latvia

juris@cclu.lv
2 Department of Computing, City University,

Northampton square, London EC1V 0HB, UK
drg@soi.city.ac.uk

Abstract. We describe algorithms for pattern matching and pattern
learning in TOPS diagrams (formal descriptions of protein topologies).
These problems can be reduced to checking for subgraph isomorphism
and finding maximal common subgraphs in a restricted class of ordered
graphs. We have developed a subgraph isomorphism algorithm for
ordered graphs, which performs well on the given set of data. The
maximal common subgraph problem then is solved by repeated
subgraph extension and checking for isomorphisms. Despite the
apparent inefficiency such approach gives an algorithm with time
complexity proportional to the number of graphs in the input set and is
still practical on the given set of data. As a result we obtain fast
methods which can be used for building a database of protein
topological motifs, and for the comparison of a given protein of known
secondary structure against a motif database.

1 Biological motivation

Once the structure of a protein has been determined, the next task for biologist
is to find hypotheses about its function. One possible approach is pairwise
comparison of the structure with the structures of proteins whose functions are
already known. There are already several tools that allow such comparisons,
for example DALI [7] (http://www.ebi.ac.uk/dali/) or CATH [11]
(http://www.biochem.ucl.ac.uk/bsm/cath/). However there are two weaknesses
with such approach. Firstly, as the number of proteins with given structure is
growing the time needed to do such comparisons is also growing. Currently
there are about 15000 protein structure descriptions deposited in the Protein

∗ Supported by a Wellcome Trust International Research Award

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Data Bank [1] (http://www.rcsb.org/pdb/), but in the future this number may
grow significantly. Secondly, even if a similarity with one or more proteins
has been found, it may not be apparent whether this may also imply functional
similarity, especially if the similarity is not very strong.

Another possibility is to try to use a similar approach at a structure level to
that used for sequences in PROSITE database [6]
(http://ca.expasy.org/prosite/). That is pre-compute a database of motifs for
proteins with known structures – i.e. structural patterns which are associated
with some particular protein function. This effectively requires comnputing
the maximal common substructure for a set of structures. One such approach
is that of CORA [10], based on multiple structural alignments of protein
sequences for given CATH families.

Both of these approaches have been successfully used for protein
comparison on the sequence level. The main difficulty in adapting them to the
structural level is the complexity of the necessary algorithms – whilst exact
sequence comparison algorithms work in linear time, exact structure
comparison algorithms may require exponential time and the situation only
gets worse with algorithms for finding maximal common substructures.
Another aspect of the problem is that it is far from clear which is the best way
to define structure similarity. There are many possible approaches, which
require different algorithmic methods and are likely to produce different
results.

Our work is aimed at the development of efficient comparison and maximal
common substructure algorithms using TOPS diagrams for structural topology
descriptions, defining structure similarity in a natural way that arises from
such formalisation, and at the evaluation of usefulness of such approach. The
drawback of such an approach is that TOPS diagrams are not very rich in
information; however it has the advantage that it is still possible to define
practical algorithms for this level of abstraction.

2 TOPS diagrams

At a comparatively simple level protein structures can be described using
TOPS cartoons (see [4], [13] and [14]). A sample cartoon for 2bopA0 is
shown in Figure 1 (for comparison a Rasmol-style picture is given in Figure
2). The cartoon shows the secondary structure elements (SSE’s) – β-strands
(depicted by triangles) and α-helices (depicted by circles), how they are
connected in a sequence from amino to carboxyl terminus, their relative
spatial positions and orientations. Such representations have been used by
biologists for some time. However the graphical images do not explicitly
represent all the topological information implied by such description and there

are no very strict rules governing the appearance of a TOPS cartoon for a
given protein.

Fig. 1. Cartoon of 2bopA0 Fig. 2. Rasmol diagram of 2bopA0

TOPS diagrams, developed by Gilbert et al (see [5]), are a more formal
description of protein structural topology and are based on TOPS cartoons.
Instead of representing spatial positions by element positions in a plane, a
TOPS diagram contains information about the grouping of β-strands in β-
sheets (two adjacent elements in β-sheet are connected by an “H-bond”,
which can be either parallel or anti-parallel) and some information about
relative orientation of elements (any two SSE’s can be connected by either left
or right chirality). Note that in the topological sense we reduce the set of
atomic hydrogen bonds between a pair of strands to a single H-bond
relationship between the strands. In principle chiralities can be defined
between any two SSE’s, however only a subset of “most important” chiralities
is included in TOPS diagrams; this subset roughly corresponds to the implicit
position information in TOPS cartoons.

Fig. 3. TOPS diagram of 2bopA0

A TOPS diagram can be regarded as a graph with four different types of
vertices (corresponding to up- or down- oriented strands and up- or down-
oriented helices) and four different types of edges (corresponding to parallel
or antiparallel H-bonds and left or right oriented chiralities). Besides that, the

corresponding graph is ordered – each vertex is assigned a unique number
from 1 to n, where n is the total number of vertices. In the figure above the
ordering is also indicated by placing the vertices in the order of increasing
numbers (looking from left to right).

3 Pattern matching and pattern discovery in TOPS

If we describe protein secondary structure by TOPS diagrams, a natural way
to characterise the similarity of two proteins is by using patterns. In general,
we can define patterns using the same type of graphs as for TOPS diagrams.
We say that a given pattern matches a given TOPS diagram if and only if the
corresponding pattern graph is a subgraph of the corresponding TOPS
diagram graph. Here we assume that subgraph relation also preserves the
order of vertices – i.e. there is a mapping F of pattern graph vertices to target
graph vertices such that for any pair of vertices v and w in pattern graph:

• if the number of v is larger than the number of w, then also the number of
F(v) is larger than the number of F(w), and

• if there is an edge between v and w, then there is an edge (of the same
type) between F(v) and F(w).

Figure 4 shows one of the possible patterns that matches the diagram for
2bopA0 by mapping vertices with numbers 1, 2, 3, 4, 5, 6 corresponding to
vertices with numbers 1, 2, 4, 6, 7, 8.

Fig. 4. TOPS pattern

In practice, however, it might be useful to make the pattern definition more
complicated. There might be reasons to require that “close” vertices in pattern
(i.e. vertices with close numbers) are to be mapped in “close” vertices in
target diagram (for some natural notion of “close”). Alternatively it might be
useful to require that target graph does not contain extra edges between
vertices to which pattern graph vertices are mapped (in this case pattern graph
must be induced subgraph of target graph).

If we want to compare a target TOPS diagram to a set of diagrams we can
do this by pairwise comparison between the target and each of the comparison
set; each such comparison can be made by finding a largest common pattern
for two diagrams and assigning a similarity measure based on the size of
pattern and the sizes of the two diagrams. Alternatively, if we want to use a
motif-based approach, we can find the largest common patterns for a given set
of proteins, consider these patterns as motifs, and check whether a pattern for
some motif matches the diagram of a target protein. In practice the definition
of a motif may be more complicated – for example, it may include several
patterns and/or some additional information.

Several algorithms of protein comparison based on the notion of patterns
have already been developed and implemented by David Gilbert and the
system is available at http://www3.ebi.ac.uk/tops/. It permits searching for
proteins that match a given pattern, or to perform pattern based comparison of
TOPS descriptions of proteins. Our current task is to implement the more
efficient algorithms that we describe here. This will permit the fast generation
of motif database, which we plan to make available on the web.

4 Experimental results

4.1 Methodology and databases

In experiments that we have performed to date we have tried to estimate the
usefulness of the pattern-based protein motifs, i.e. what is the probability that
the fact that a protein matches a given motif implies that protein has also some
real similarity with other proteins characterised by the same motif. To do this,
we have tried to compare our approach against the existing CATH protein
classification database. CATH [11] is a hierarchical classification of protein
domain structures, which clusters proteins at four major levels – Class (C),
Architecture (A), Topology (T) and Homologous superfamily (H). There are
four different C classes – mainly alpha (class 1), mainly beta (class 2), alpha-
beta (class 3) and low secondary structure content (class 4). In most cases C
classes are assigned automatically. The architecture level describes the
overall shape of the domain structure according to orientations of the
secondary structures; classes in this level are assigned manually. Classes in
the topology level depend on both the overall shape and connectivity of the
secondary structures and are assigned automatically by the SSAP algorithm.
Classes in the homologous superfamily level group together protein domains
which are thought to share a common ancestor and can therefore be described
as homologous. They are assigned automatically from the results of sequence
comparisons and structure comparisons (using SSAP).

Our comparisons are based on the assumption that identical CATH
numbers will also imply some similarity of the TOPS diagrams for the
corresponding proteins. The TOPS Atlas database [13], containing 2853
domains and based on clustering structures from the protein data bank [1]
using the standard single linkage clustering algorithm at 95% sequence
similarity, was selected as the data set for this investigation. Structures with
identical CATH numbers (to a given level) have been placed in one group and
a maximal common pattern for this group has been computed. Then the
pattern was matched against all structures in the selected subset and the
quality q of the pattern, corresponding to positive predictive value, computed
as follows:

q = number of proteins in a given group / number of successful matches.

Thus, q = 1 corresponds to a “good” pattern (no false positives) and the
value of q is lower for less good patterns.

4.2 Results

The experiments were performed using CATH number identity at levels A, T
and H. The CATH number identity at the A level was clearly insufficient to
guaranty any similarity at TOPS diagram level; somewhat more surprising
was the fact that identity at the T (topological) level still produced noticeably
weaker results than identity at H level. Results for the latter are shown in
Figure 5.

Fig. 5. Quality of TOPS patterns at CATH H level

Here the values of q for all domains from the data set (in lexicographical
order by CATH numbers) are shown. The first 527 structures correspond to
CATH class 1 (mainly alpha), the next 1048 to class 2 (mainly beta), the
following 1151 to class 3 (alpha-beta) and the last 124 to class 4 (weak
secondary structure contents). As can be expected q values are small for class
4, since there is very little secondary structure information and also for class
1, since in mainly alpha domains there are few H-bonds and the

corresponding TOPS diagrams contain little information about topology.
Better q values can be observed for classes 2 and 3.

Fig. 6. Quality of TOPS patterns for CATH class 3

Figure 6 shows q values (in light-grey) for class 3. Here the proteins have
been reordered according to increasing q values. As can be seen, in about 36%
of cases q value is 1, i.e. the CATH number is uniquely defined by a TOPS
pattern. Also, there are not many proteins with q values close, but less than 1.
Therefore, if a pattern has been proven to be “good” for known proteins, it is
likely that it will remain “good” for new, as yet unclassified, proteins. For
comparison the figure also contains values (in dark-grey) where q values have
been computed using only secondary structure sequence patterns instead of
complete TOPS diagrams. This demonstrates that “good” sequence patterns
only exist for approximately 8% of structures. The “superiority” of sequence
patterns for one group is caused by different definitions of the largest pattern.

Fig. 7. Quality of TOPS patterns for CATH class 3 ordered by the size of patterns

Figure 7 contains the same data as Figure 6, but initially ordered by pattern
size as computed by the number of SSE’s in the pattern, and then by q values.
It can be seen that we start to get good q values when the number of SSE’s
reaches 7 or 8 (proteins with numbers from 459 or 531 on horizontal axis),
and that q values are good in most cases when number of SSE’s reaches 11
(proteins with numbers from 800 on horizontal axis). Therefore, if a protein

contains 7 or more SSE’s, there is a good chance that it will have “good”
pattern, and, if it contains 11 or more SSE’s then in most cases it will have
“good” pattern.

Thus, the results obtained as far suggest that a database of pattern motifs
could be quite useful for comparison of those proteins that have sufficiently
rich secondary structure content and especially for proteins with a large
number of strands. This is not the largest subgroup of all proteins; however
for this subgroup there are good chances that comparison with TOPS motifs
will give biologically useful information. Of course, TOPS diagrams contain
limited information about secondary structure; thus we can expect that motifs
based on richer secondary structure models may give better results. At the
same time the TOPS formalism has advantage that all computations can be
performed comparatively quickly. The exact computation times are very
dependent on the given data, but in general it can be assumed that the
comparison of a given protein against a database of about 1000 motifs
requires less than 0.1 second on an ordinary 600 MHz PC workstation. The
discovery of motifs and associated evaluation via pattern matching over the
TOPS Atlas has been done in about 2 hours on the same equipment.

5 TOPS patterns and related graph problems

The basic problems that arise in TOPS formalism, namely, pattern matching
and pattern discovery, can be easily reduced to that of subgraph isomorphism
and maximal common subgraph problems in ordered graphs. We consider the
following types of vertex ordered labelled graphs.

5.1 Definitions

A given graph G = (V,E) is vertex ordered if there is a one to one mapping
between the set of numbers {1, 2,…,|V|} and set of vertices V. Let us call the
number that corresponds to v∈ V the vertex position and denote it by p(v).

We consider undirected graphs, thus we can assume that edges are defined
by ordered pairs (v,w) where p(v) < p(w).

Given vertex ordered graph, we define the edge order in the following way:

p((v1,w1)) < p((v2,w2)) if and only if p(v1) < p(v2), or p(v1) = p(v2) and p(w1)
< p(w2),

and assign to edges numbers {1, 2,…,|E|} according to this order. Let call
these numbers edge positions and denote them by p(e).

A graph G = (V,E) is vertex (edge) labelled with set of labels S, if there is
given a function lv: V → S (le: E → S for edge labels). We denote the label of
a vertex v∈ V by l(v) and the label of an edge e∈ E by l(e).

For given vertex ordered and vertex and edge labelled graphs G1 = (V1,E1)
and G2 = (V2,E2) we say that G1 is isomorphic to a subgraph of G2, if there is
an injective mapping I from V1 to V2, such that:

• for all v,w∈ V1, if p(v) < p(w), then p(I(v)) < p(I(v)),
• for all v,w∈ V1, if (v,w)∈ E1, then (I(v),I(w))∈ E2,
• for all v∈ V1 we have l(v) = l(I(v)),
• for all (v,w)∈ E1 we have l((v,w)) = l((I(v),I(w)).

Since each edge is uniquely determined by two vertices we can extend
isomorphism mapping I also to edges by defining I((v,w)) = (I(v),I(w)). Then I
preserves edge order, similarly as it preserves vertex order, i.e. for all
e1,e2∈ E1, if p(e1) < p(e2), then p(I(e1)) < p(I(e2)).

5.2 Graph representation of TOPS diagrams

We can consider a TOPS diagram as a vertex ordered and vertex and edge
labelled graph with the set of vertex labels SV = {e+,e–,h+,h–} (up- or down-
oriented strand or up- or down- oriented helix) and the set of edge labels SE =
{P,A,L,R,PL,PR,AL,AR} (parallel or antiparallel H-bonds or left or right
oriented chiralities or a combination of H-bonds and chiralities). In practice, P
edges are only permitted between e+ and e+ or e– and e– vertices, and A
edges are allowed only between e+ and e– or e– and e+ vertices, but here for
us this is not essential.

For practical purposes it is also worth noting the complexity of graphs that
have to be dealt with in TOPS formalism – the maximal number of vertices is
around 50 and the number of edges is comparatively small and similar to the
number of vertices.

Let P be a TOPS pattern and let D1 and D2 be TOPS diagrams and let G(P),
G(D1) and G(D2) be the graphs corresponding to these patterns or diagrams.
Then the problem of checking whether TOPS pattern P will match diagram D1
is equivalent to checking whether G(P) is isomorphic to a subgraph of G(D1).

Similarly, the problem of finding a largest common pattern P of D1 and D2
is equivalent with finding a largest common subgraph G(P) of G(D1) and
G(D2).

5.3 Complexity and relation to other work

First, it is easy to see that the subgraph isomorphism problem for vertex
ordered graphs remains NP-complete, since the maximal clique problem is
NP complete, and this is not altered by vertex ordering. Also, the relatively
small number of edges cannot be exploited to obtain polynomial algorithms,
since in [3] and [15] similar graph structures are considered that are even
simpler (the vertex degree is 0 or 1) and for such graphs the subgraph
isomorphism problem is proven to be NP -complete. In [3] an algorithm is

given that is polynomial with the respect to the number of overlapping edges,
however in TOPS this number tends to be quite large.

There are several “good” non-polynomial algorithms for subgraph
isomorphism problem, the most popular being by Ullmann [12] and
McGregor [9]. Although these are not straightforwardly adaptable to vertex
ordered graphs, the vertex ordering seems to be the property that could
considerably improve the algorithm efficiency. Our algorithm can be
regarded as a variant of method based on constraint satisfaction [9]; however
there is an additional mechanism of re-computing constraints which is
periodically invoked.

A very similar class of graphs has also been considered by I.Koch,
T.Legauer and E.Wanke in [8] where the authors describe a maximal common
subgraph algorithm based on searching for maximal cliques in a vertex
product graph. This method seems to be applicable also for TOPS; however it
is only practical for finding maximal common subgraphs for two graphs and is
not directly useful for finding motifs for larger sets of proteins.

6 Subgraph isomorphism algorithm for ordered graphs

We have developed a subgraph isomorphism algorithm that exploits the fact
that the graphs are vertex oriented. Initially, let us assume that we are dealing
with graphs that are connected and do not contain isolated vertices (this set is
also the most important in practice). Then an isomorphism mapping I is
uniquely determined by defining the mapping of edges.

The algorithm tries to match edges in the increasing order of edge positions
and backtracks if for some edge match can not be found. Since the graphs are
ordered, the positions in the target graph to which a given edge may be
mapped and which have to be checked can only increase. Two additional
ideas are used to make this process more efficient. Firstly, we assign a number
of additional labels to vertices and edges. Secondly, if an edge e can not be
mapped according to the existing mapping for previous edges, then the next
place where this edge can be mapped according to the labels is found, and the
minimal match positions of previous edges are advanced in order to be
compatible with the minimal position of e.

6.1 Labelling

By definition vertices and edges are already assigned labels lv and le
correspondingly that must be preserved by isomorphism mapping.
Additionally we use an another kind of label for both vertices and edges,
which we call Index.

Vertex index Index(v) is a 16-tuple of integers (containing twice as many
elements as there are edge labels). The i-th element of Index(v) is the number
of edges (x,v) with le((x,v)) equal to the i-th possible value of le (according to
some initially fixed order of labels). Similarly, the (k+i)-th element of
Index(v) is the number of edges (v,x) with le((v,x)) equal to the i-th possible
value of le. Thus, the value Index(v) encodes the numbers of “incoming” and
“outgoing” edges of all possible types for a given vertex v.

Edge index Index(e) for edge e = (v,w) is a 4-tuple of integers
<S1,S2,E1,E2>, where S1 is the number of edges (v,x) with p(x) < p(w), S2 is
the number of edges (v,x) with p(x) > p(w), E1 is the number of edges (y,w)
with p(y) < p(w), and E2 is the number of edges (y,w) with p(y) > p(w). The
edge index describes how many “shorter” or “longer” other edges are
connected to the endpoints of a given edge.

For both vertices and edges we define Index(x) ≤ Index(y) if the inequality
holds between the all corresponding pairs of 16-tuples (or 4-tuples). It is easy
to see that for isomorphism mapping I for any vertex or edge x we must have
Index(x) ≤ Index(I(x)).

6.2 Algorithm

We assume that graphs are given as arrays PV, PE, TV and TE, where PV is
an array of vertices in the pattern graph with PV[i] being the vertex v with
p(v) = i, PE is an array of edges in the pattern graph with PE[i] being the edge
e with p(e) = i, and TV and TE are similar arrays for the target graph.
 For an edge of pattern graph e list Matches(e) contains all possible
positions (in increasing order) in target graph to which e can be matched
according to vertex and edge labels and Index-es. By Matches(e)[i] we denote
the i-th element from this list. The number Next(e) is the first position in
Matches(e) list to which it still may be worth to try to match the edge. Initially
for all edges we have Next(e) = 1.
 For vertex v the number Pos(v) is the position in target graph to which
vertex v is matched. Pos(v) = 0 for vertices for which the match still is not
found.
 The main loop of the algorithm is as follows.

procedure SubgraphIsomorphismInOrderedGraphs(PV,PE,TV,TE)

for all vertices e in PE do
Compute the list Matches(e); Next(e) ← 1

 if Matches(e) = ∅ then return Not Isomorphic
 end for

for all vertices v in PV do Pos(v) ← 0
k ← 1

 while k ≤ |PE| do

 edge = (v,w) ← PE[k]
 if Next(edge) > |Matches(edge)| then return Not Isomorphic

Find the smallest i ≥ Next(edge) such that for the target graph edge
(vt,wt) = Matches(edge)[i] and for both vertices v and w either
Pos(v) = 0 or Pos(v) = vt and either Pos(w) = 0 or Pos(w) = wt (and
p((vt,wt)) > Matches(PE[k−1])(Next(PE[k−1]), if k > 1)
if such an i is found then

Next(edge) ← i; Pos(v) ← vt; Pos(w) ← wt; k ← k + 1
 else

Find the smallest j ≥ Next(edge) such that (if k > 1) for the
target graph edge (vt, wt) = Matches(edge)[j] we have
p((vt,wt)) > Matches(PE[k−1])[Next(PE[k−1])] (take
j ← Next(edge), if k = 1)
Next(edge) ← j

 for all edges e in PE with p(e) < k do Moved(e) ← false
 (vt,wt) ← Matches(edge)[j]
 AdvanceEdgeMatchPositions(v,vt)

 Set k to be the smallest value for which there is an edge e =
(v2, w2) with p(e) = k and either Pos(v2) = 0 or Pos(w2) = 0

end if
 end while
 return Pos (array of vertex mappings)
end procedure

 Starting from the first edge the algorithm tries to find matches for all
edges in increasing order and returns an array Pos of vertex mappings, if it
succeeds. If for some edge a match consistent with matches for previous
edges can not be found a procedure AdvanceEdgeMatchPositions is invoked,
which tries to increase the values Next(e) for some of already matched edges
and the matching process is continued starting from the first edge for which
the value Next(e) has been changed.
 Procedure AdvanceEdgeMatchPositions uses a variant of depth first
search to find edges for which Next(e) can be increased. Alternative strategies
are possible,

procedure AdvanceEdgeMatchPositions(v,vt)
PatternVertexStack ← empty; Push(PatternVertexStack,v)
TargetVertexStack ← empty; Push(TargetVertexStack,vt)

while PatternVertexStack ≠ ∅ do
 pvert ← Pop(PatternVertexStack); tvert ← Pop(TargetVertexStack)

for all edges e with p(e) < k, Moved(e) = false and with one endpoint
pvert do

Moved(e) ← true
Find the smallest i ≥ Next(e) such that for (vt2, wt2) = Matches(e)[i]
we have wt2 ≥ tvert (or vt2 ≥ tvert, if pvert is the “rightmost”
endpoint of e)
if such an i is found then

 Next(e) ← i
 Let newpvert be the other endpoint of e

newtvert ← vt2 (or newtvert ← wt2, if pvert is the“rightmost”
endpoint of e)

 if Pos(newpvert) ≠ 0 then
 Pos(newpvert) = 0
 Push(PatternVertexStack,newpvert)
 Push(TargetVertexStack,newtvert)
 end if
 else return Not Isomorphic
 end for

end while
end procedure

6.3 Correctness

The informal motivation why the algorithm correctly finds an isomorphic
subgraph (or gives the answer that no isomorphic subgraph exists) is the
following. First, as already noted above, for connected oriented graphs the
isomorphism mapping is completely defined by defining the mapping for
edges. For an isomorphism mapping it is sufficient to satisfy the labelling
constraints on edge endpoints, preserve edge order and connectivity. If the
AdvanceEdgeMatchPositions procedure is not used, the algorithm simply
performs an exhaustive search of all mappings satisfying these constraints and
either finds one, or returns an answer that no such mapping exists. If the
AdvanceEdgeMatchPositions procedure is included, then when invoked it
receives a vertex v in pattern graph and the first vertex vt in target to which v
may be mapped according to search performed so far. The constraints on edge
mappings are then narrowed down to be consistent with the mapping
requirement for vertex v.

6.4 General case of disconnected graphs

To deal with graphs that may be disconnected (but do not have isolated
vertices) we additionally have to check that the vertex positions are preserved
by isomorphism mapping, i.e., for vertices v and w in pattern graph with p(v)
< p(w) we must have p(I(v)) < p(I(w)). If we have isolated vertices, we
additionally have to check that the sequence of vertices between v and w is a

substring of the sequence of vertices between I(v) and I(w). This additional
checking can be easily incorporated into the algorithm.

7 Maximal common subgraph problem

The subgraph isomorphism algorithm is very fast for graphs corresponding to
TOPS diagrams. This permits finding maximal common subgraphs by
repeated extension and checking for subgraph isomorphism.

In order to find the maximal common subgraph for a given set of graphs we
basically use an exhaustive search. Starting a the simple (one vertex) pattern
graph, we check for subgraph isomorphism against all graphs in a given set
and in the case of success attempt to extend the already matched pattern graph
in all possible ways. Some restrictions on the number of different types of
edges and vertices can be deduced from the given set of target graphs and are
used by the algorithm. Apart from that, the previous successful match may be
used to deduce information about extensions which are more likely to be
successful in the next match. In general this does not prune the search space
but may help to discover large common subgraphs earlier. There is also a
greater probability that the largest common subgraph is found within a given
time limit, even when the search has not been completed.

The advantage of this approach is that we obtain an algorithm with time
complexity that is linear with respect to the number of graphs in a given set.
Since there are likely to be more restrictions on the pattern for larger sets,
often the most difficult cases arise for sets containing only one graph –
however in this case we can simply return the given graph as the maximal
common subgraph. Other methods that are known (for example as described
in [8]) may be more efficient for sets containing a small number (basically
just two) of graphs, but in general cannot be used to find the exact answer to
the problem for larger sets.

Experiments suggest that this approach is still practical for TOPS diagrams.
As mentioned above in the results section, all motifs in the Atlas for the
CATH level H have been found by using repeated pattern matching and
extension in 2 hours on an ordinary PC workstation. However it seems that
the size of TOPS diagrams is quite close to the limit up to which such a
maximal common subgraph algorithm can be successfully used, thus our
solution may be quite problem specific. At the same time we expect that the
subgraph isomorphism algorithm may be adapted also for considerably larger
structures and may be useful for the other problems in bioinformatics.

References

1. Berman, H.M., Westbrook, J., Feng., Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research
28 (2000) 235–242.

2. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected
graph. Communications of ACM 16 (1973) 575–577.

3. Evans, P.A.: Finding common subsequences with arcs and pseudoknots.
Proceedings of Combinatorial Pattern Matching 1999, LNCS 1645 (1999) 270–
280.

4. Flores, T.P.J., Moss, D.M., Thornton, J.M.: An algorithm for automatically
generating protein topology cartoons. Protein Engineering 7 (1994) 31–37.

5. Gilbert, D., Westhead, D.R., Nagano, N., Thornton, J.M.: Motif-based searching
in tops protein topology databases. Bioinformatics 15 (1999) 317–326.

6. Hofmann, K., Bucher, P., Falquet, L., Bairoch, A.: The PROSITE database, its
status in 1999. Nucleic Acids Research 27 (1999) 215–219.

7. Holm, L., Park, J.: DaliLite workbench for protein structure comparison.
Bioinformatics 16 (2000) 566–567.

8. Koch, I., Lengauer, T., Wanke, E.: An algorithm for finding maximal common
subtopologies in a set of protein structures. Journal of Computational Biology 3
(1996) 289–306.

9. McGregor, J.J.: Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Information Science 19 (1979) 229–250.

10. Orengo, C.A.: CORA – topological fingerprints for protein structural families.
Protein Science 8 (1999) 699–715.

11. Orengo, C.A., Michie, A.D., Jones, S., Swindelis, M.B.: CATH – a hierarchic
classification of protein domain structures. Structure 5 (1997) 1093–1108.

12. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM 23
(1976) 31–42.

13. Westhead, D.R., Hatton, D.C., Thornton, J.M.: An atlas of protein topology
cartoons available on the World Wide Web. Trends in Biochemical Sciences 23
(1998) 35–36.

14. Westhead, D.R., Slidel, T.W.F., Flores, T.P.J., Thornton, J.M.: Protein structural
topology: automated analysis and diagrammatic representation. Protein Science 8
(1999) 897–904.

15. Zhang, K., Wang, L., Ma, B.: Computing similarity between RNA structures.
Proceedings of Combinatorial Pattern Matching 1999, LNCS 1645 (1999) 281–
293.

