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Abstract. We describe algorithms for pattern matching and pattern 
learning in TOPS diagrams (formal descriptions of protein topologies). 
These problems can be reduced to checking for subgraph isomorphism 
and finding maximal common subgraphs in a restricted class of ordered 
graphs. We have developed a subgraph isomorphism algorithm for 
ordered graphs, which performs well on the given set of data. The 
maximal common subgraph problem then is solved by repeated 
subgraph extension and checking for isomorphisms. Despite the 
apparent inefficiency such approach gives an algorithm with time 
complexity proportional to the number of graphs in the input set and is 
still practical on the given set of data. As a result we obtain fast 
methods which can be used for building a database of protein 
topological motifs, and for the comparison of a given protein of known 
secondary structure against a motif database. 

1 Biological motivation 

Once the structure of a protein has been determined, the next task for biologist 
is to find hypotheses about its function. One possible approach is pairwise 
comparison of the structure with the structures of proteins whose functions are 
already known. There are already several tools that allow such comparisons, 
for example DALI [7] (http://www.ebi.ac.uk/dali/) or CATH [11] 
(http://www.biochem.ucl.ac.uk/bsm/cath/). However there are two weaknesses 
with such approach. Firstly, as the number of proteins with given structure is 
growing the time needed to do such comparisons is also growing. Currently 
there are about 15000 protein structure descriptions deposited in the Protein 
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Data Bank [1] (http://www.rcsb.org/pdb/), but in the future this number may 
grow significantly. Secondly, even if a similarity with one or more proteins 
has been found, it may not be apparent whether this may also imply functional 
similarity, especially if the similarity is not very strong. 

Another possibility is to try to use a similar approach at a structure level to 
that used for sequences in PROSITE database [6] 
(http://ca.expasy.org/prosite/). That is pre-compute a database of motifs for 
proteins with known structures – i.e. structural patterns which are associated 
with some particular protein function. This effectively requires comnputing 
the maximal common substructure for a set of structures. One such approach 
is that of CORA [10], based on multiple structural alignments of protein 
sequences for given CATH families. 

Both of these approaches have been successfully used for protein 
comparison on the sequence level. The main difficulty in adapting them to the 
structural level is the complexity of the necessary algorithms – whilst exact 
sequence comparison algorithms work in linear time, exact structure 
comparison algorithms may require exponential time and the situation only 
gets worse with algorithms for finding maximal common substructures. 
Another aspect of the problem is that it is far from clear which is the best way 
to define structure similarity. There are many possible approaches, which 
require different algorithmic methods and are likely to produce different 
results. 

Our work is aimed at the development of efficient comparison and maximal 
common substructure algorithms using TOPS diagrams for structural topology 
descriptions, defining structure similarity in a natural way that arises from 
such formalisation, and at the evaluation of usefulness of such approach. The 
drawback of such an approach is that TOPS diagrams are not very rich in 
information; however it has the advantage that it is still possible to define 
practical algorithms for this level of abstraction. 

2 TOPS diagrams 

At a comparatively simple level protein structures can be described using 
TOPS cartoons (see [4], [13] and [14]). A sample cartoon for 2bopA0 is 
shown in Figure 1 (for comparison a Rasmol-style picture is given in Figure 
2). The cartoon shows the secondary structure elements (SSE’s) – β-strands 
(depicted by triangles) and α-helices (depicted by circles), how they are 
connected in a sequence from amino to carboxyl terminus, their relative 
spatial positions and orientations. Such representations have been used by 
biologists for some time. However the graphical images do not explicitly 
represent all the topological information implied by such description and there 



are no very strict rules governing the appearance of a TOPS cartoon for a 
given protein. 

 

Fig. 1. Cartoon of 2bopA0    Fig. 2. Rasmol diagram of 2bopA0 

TOPS diagrams, developed by Gilbert et al (see [5]), are a more formal 
description of protein structural topology and are based on TOPS cartoons. 
Instead of representing spatial positions by element positions in a plane, a 
TOPS diagram contains information about the grouping of β-strands in β-
sheets (two adjacent elements in β-sheet are connected by an “H-bond”, 
which can be either parallel or anti-parallel) and some information about 
relative orientation of elements (any two SSE’s can be connected by either left 
or right chirality).  Note that in the topological sense we reduce the set of 
atomic hydrogen bonds between a pair of strands to a single H-bond 
relationship between the strands.  In principle chiralities can be defined 
between any two SSE’s, however only a subset of “most important” chiralities 
is included in TOPS diagrams;  this subset roughly corresponds to the implicit 
position information in TOPS cartoons. 

 

Fig. 3. TOPS diagram of 2bopA0 

A TOPS diagram can be regarded as a graph with four different types of 
vertices (corresponding to up- or down- oriented strands and up- or down- 
oriented helices) and four different types of edges (corresponding to parallel 
or antiparallel H-bonds and left or right oriented chiralities). Besides that, the 



corresponding graph is ordered – each vertex is assigned a unique number 
from 1 to n, where n is the total number of vertices. In the figure above the 
ordering is also indicated by placing the vertices in the order of increasing 
numbers (looking from left to right). 

3 Pattern matching and pattern discovery in TOPS 

If we describe protein secondary structure by TOPS diagrams, a natural way 
to characterise the similarity of two proteins is by using patterns. In general, 
we can define patterns using the same type of graphs as for TOPS diagrams. 
We say that a given pattern matches a given TOPS diagram if and only if the 
corresponding pattern graph is a subgraph of the corresponding TOPS 
diagram graph. Here we assume that subgraph relation also preserves the 
order of vertices – i.e. there is a mapping F of pattern graph vertices to target 
graph vertices such that for any pair of vertices v and w in pattern graph: 

• if the number of v is larger than the number of w, then also the number of 
F(v) is larger than the number of F(w), and 

• if there is an edge between v and w, then there is an edge (of the same 
type) between F(v) and F(w). 

Figure 4 shows one of the possible patterns that matches the diagram for 
2bopA0 by mapping vertices with numbers 1, 2, 3, 4, 5, 6 corresponding to 
vertices with numbers 1, 2, 4, 6, 7, 8. 
 

Fig. 4. TOPS pattern 

In practice, however, it might be useful to make the pattern definition more 
complicated. There might be reasons to require that “close” vertices in pattern 
(i.e. vertices with close numbers) are to be mapped in “close” vertices in 
target diagram (for some natural notion of “close”). Alternatively it might be 
useful to require that target graph does not contain extra edges between 
vertices to which pattern graph vertices are mapped (in this case pattern graph 
must be induced subgraph of target graph). 



If we want to compare a target TOPS diagram to a set of diagrams we can 
do this by pairwise comparison between the target and each of the comparison 
set; each such comparison can be made by finding a largest common pattern 
for two diagrams and assigning a similarity measure based on the size of 
pattern and the sizes of the two diagrams. Alternatively, if we want to use a 
motif-based approach, we can find the largest common patterns for a given set 
of proteins, consider these patterns as motifs, and check whether a pattern for 
some motif matches the diagram of a target protein. In practice the definition 
of a motif may be more complicated – for example, it may include several 
patterns and/or some additional information. 

Several algorithms of protein comparison based on the notion of patterns 
have already been developed and implemented by David Gilbert and the 
system is available at http://www3.ebi.ac.uk/tops/. It permits searching for 
proteins that match a given pattern, or to perform pattern based comparison of 
TOPS descriptions of proteins. Our current task is to implement the more 
efficient algorithms that we describe here. This will permit the fast generation 
of motif database, which we plan to make available on the web. 

4 Experimental results 

4.1 Methodology and databases 

In experiments that we have performed to date we have tried to estimate the 
usefulness of the pattern-based protein motifs, i.e. what is the probability that 
the fact that a protein matches a given motif implies that protein has also some 
real similarity with other proteins characterised by the same motif. To do this, 
we have tried to compare our approach against the existing CATH protein 
classification database. CATH [11] is a hierarchical classification of protein 
domain structures, which clusters proteins at four major levels – Class (C), 
Architecture (A), Topology (T) and Homologous superfamily (H). There are 
four different C classes – mainly alpha (class 1), mainly beta (class 2), alpha-
beta (class 3) and low secondary structure content (class 4). In most cases C 
classes are assigned automatically.  The architecture level describes the 
overall shape of the domain structure according to orientations of the 
secondary structures; classes in this level are assigned manually. Classes in 
the topology level depend on both the overall shape and connectivity of the 
secondary structures and are assigned automatically by the SSAP algorithm. 
Classes in the homologous superfamily level group together protein domains 
which are thought to share a common ancestor and can therefore be described 
as homologous. They are assigned automatically from the results of sequence 
comparisons and structure comparisons (using SSAP). 



Our comparisons are based on the assumption that identical CATH 
numbers will also imply some similarity of the TOPS diagrams for the 
corresponding proteins. The TOPS Atlas database [13], containing 2853 
domains and based on clustering structures from the protein data bank [1] 
using the standard single linkage clustering algorithm at 95% sequence 
similarity, was selected as the data set for this investigation. Structures with 
identical CATH numbers (to a given level) have been placed in one group and 
a maximal common pattern for this group has been computed. Then the 
pattern was matched against all structures in the selected subset and the 
quality q of the pattern, corresponding to positive predictive value, computed 
as follows: 

q = number of proteins in a given group / number of successful matches. 

Thus, q = 1 corresponds to a “good” pattern (no false positives) and the 
value of q is lower for less good patterns. 

4.2 Results 

The experiments were performed using CATH number identity at levels A, T 
and H. The CATH number identity at the A level was clearly insufficient to 
guaranty any similarity at TOPS diagram level; somewhat more surprising 
was the fact that identity at the T (topological) level still produced noticeably 
weaker results than identity at H level.  Results for the latter are shown in 
Figure 5. 

Fig. 5. Quality of TOPS patterns at CATH H level 

Here the values of q for all domains from the data set (in lexicographical 
order by CATH numbers) are shown. The first 527 structures correspond to 
CATH class 1 (mainly alpha), the next 1048 to class 2 (mainly beta), the 
following 1151 to class 3 (alpha-beta) and the last 124 to class 4 (weak 
secondary structure contents). As can be expected q values are small for class 
4, since there is very little secondary structure information and also for class 
1, since in mainly alpha domains there are few H-bonds and the 



corresponding TOPS diagrams contain little information about topology. 
Better q values can be observed for classes 2 and 3. 

Fig. 6. Quality of TOPS patterns for CATH class 3 

Figure 6 shows q values (in light-grey) for class 3. Here the proteins have 
been reordered according to increasing q values. As can be seen, in about 36% 
of cases q value is 1, i.e. the CATH number is uniquely defined by a TOPS 
pattern. Also, there are not many proteins with q values close, but less than 1. 
Therefore, if a pattern has been proven to be “good” for known proteins, it is 
likely that it will remain “good” for new, as yet unclassified, proteins. For 
comparison the figure also contains values (in dark-grey) where q values have 
been computed using only secondary structure sequence patterns instead of 
complete TOPS diagrams. This demonstrates that “good” sequence patterns 
only exist for approximately 8% of structures. The “superiority” of sequence 
patterns for one group is caused by different definitions of the largest pattern. 

Fig. 7. Quality of TOPS patterns for CATH class 3 ordered by the size of patterns 

Figure 7 contains the same data as Figure 6, but initially ordered by pattern 
size as computed by the number of SSE’s in the pattern, and then by q values. 
It can be seen that we start to get good q values when the number of SSE’s 
reaches 7 or 8 (proteins with numbers from 459 or 531 on horizontal axis), 
and that q values are good in most cases when number of SSE’s reaches 11 
(proteins with numbers from 800 on horizontal axis). Therefore, if a protein 



contains 7 or more SSE’s, there is a good chance that it will have “good” 
pattern, and, if it contains 11 or more SSE’s then in most cases it will have 
“good” pattern. 

Thus, the results obtained as far suggest that a database of pattern motifs 
could be quite useful for comparison of those proteins that have sufficiently 
rich secondary structure content and especially for proteins with a large 
number of strands. This is not the largest subgroup of all proteins; however 
for this subgroup there are good chances that comparison with TOPS motifs 
will give biologically useful information. Of course, TOPS diagrams contain 
limited information about secondary structure; thus we can expect that motifs 
based on richer secondary structure models may give better results. At the 
same time the TOPS formalism has advantage that all computations can be 
performed comparatively quickly. The exact computation times are very 
dependent on the given data, but in general it can be assumed that the 
comparison of a given protein against a database of about 1000 motifs 
requires less than 0.1 second on an ordinary 600 MHz PC workstation. The 
discovery of motifs and associated evaluation via pattern matching over the 
TOPS Atlas has been done in about 2 hours on the same equipment. 

5 TOPS patterns and related graph problems 

The basic problems that arise in TOPS formalism, namely, pattern matching 
and pattern discovery, can be easily reduced to that of subgraph isomorphism 
and maximal common subgraph problems in ordered graphs. We consider the 
following types of vertex ordered labelled graphs. 

5.1 Definitions 

A given graph G = (V,E) is vertex ordered if there is a one to one mapping 
between the set of numbers {1, 2,…,|V|} and set of vertices V. Let us call the 
number that corresponds to v∈ V the vertex position and denote it by p(v). 

We consider undirected graphs, thus we can assume that edges are defined 
by ordered pairs (v,w) where p(v) < p(w). 

Given vertex ordered graph, we define the edge order in the following way: 

p((v1,w1)) < p((v2,w2)) if and only if p(v1) < p(v2), or p(v1) = p(v2) and p(w1) 
< p(w2), 

and assign to edges numbers {1, 2,…,|E|} according to this order. Let call 
these numbers edge positions and denote them by p(e). 

A graph G = (V,E) is vertex (edge) labelled with set of labels S, if there is 
given a function lv: V → S (le: E → S for edge labels). We denote the label of 
a vertex v∈ V by l(v) and the label of an edge e∈ E by l(e). 



For given vertex ordered and vertex and edge labelled graphs G1 = (V1,E1) 
and G2 = (V2,E2) we say that G1 is isomorphic to a subgraph of G2, if there is 
an injective mapping I from V1 to V2, such that: 

• for all v,w∈ V1, if p(v) < p(w), then p(I(v)) < p(I(v)), 
• for all v,w∈ V1, if (v,w)∈ E1, then (I(v),I(w))∈ E2, 
• for all v∈ V1 we have l(v) = l(I(v)), 
• for all (v,w)∈ E1 we have l((v,w)) = l((I(v),I(w)). 

Since each edge is uniquely determined by two vertices we can extend 
isomorphism mapping I also to edges by defining I((v,w)) = (I(v),I(w)). Then I 
preserves edge order, similarly as it preserves vertex order, i.e. for all 
e1,e2∈ E1, if p(e1) < p(e2), then p(I(e1)) < p(I(e2)). 

5.2 Graph representation of TOPS diagrams 

We can consider a TOPS diagram as a vertex ordered and vertex and edge 
labelled graph with the set of vertex labels SV = {e+,e–,h+,h–} (up- or down- 
oriented strand or up- or down- oriented helix) and the set of edge labels SE = 
{P,A,L,R,PL,PR,AL,AR} (parallel or antiparallel H-bonds or left or right 
oriented chiralities or a combination of H-bonds and chiralities). In practice, P 
edges are only permitted between e+ and e+ or e– and e– vertices, and A 
edges are allowed only between e+ and e– or e– and e+ vertices, but here for 
us this is not essential. 

For practical purposes it is also worth noting the complexity of graphs that 
have to be dealt with in TOPS formalism – the maximal number of vertices is 
around 50 and the number of edges is comparatively small and similar to the 
number of vertices. 

Let P be a TOPS pattern and let D1 and D2 be TOPS diagrams and let G(P), 
G(D1) and G(D2) be the graphs corresponding to these patterns or diagrams. 
Then the problem of checking whether TOPS pattern P will match diagram D1 
is equivalent to checking whether G(P) is isomorphic to a subgraph of G(D1).  

Similarly, the problem of finding a largest common pattern P of D1 and D2 
is equivalent with finding a largest common subgraph G(P) of G(D1) and 
G(D2). 

5.3 Complexity and relation to other work 

First, it is easy to see that the subgraph isomorphism problem for vertex 
ordered graphs remains NP-complete, since the maximal clique problem is 
NP complete, and this is not altered by vertex ordering. Also, the relatively 
small number of edges cannot be exploited to obtain polynomial algorithms, 
since in [3] and [15] similar graph structures are considered that are even 
simpler (the vertex degree is 0 or 1) and for such graphs the subgraph 
isomorphism problem is proven to be NP -complete. In [3] an algorithm is 



given that is polynomial with the respect to the number of overlapping edges, 
however in TOPS this number tends to be quite large. 

There are several “good” non-polynomial algorithms for subgraph 
isomorphism problem, the most popular being by Ullmann [12] and 
McGregor [9]. Although these are not straightforwardly adaptable to vertex 
ordered graphs, the vertex ordering seems to be the property that could 
considerably improve the algorithm efficiency.  Our algorithm can be 
regarded as a variant of method based on constraint satisfaction [9]; however 
there is an additional mechanism of re-computing constraints which is 
periodically invoked. 

A very similar class of graphs has also been considered by I.Koch, 
T.Legauer and E.Wanke in [8] where the authors describe a maximal common 
subgraph algorithm based on searching for maximal cliques in a vertex 
product graph. This method seems to be applicable also for TOPS; however it 
is only practical for finding maximal common subgraphs for two graphs and is 
not directly useful for finding motifs for larger sets of proteins. 

6 Subgraph isomorphism algorithm for ordered graphs 

We have developed a subgraph isomorphism algorithm that exploits the fact 
that the graphs are vertex oriented. Initially, let us assume that we are dealing 
with graphs that are connected and do not contain isolated vertices (this set is 
also the most important in practice). Then an isomorphism mapping I is 
uniquely determined by defining the mapping of edges. 

The algorithm tries to match edges in the increasing order of edge positions 
and backtracks if for some edge match can not be found. Since the graphs are 
ordered, the positions in the target graph to which a given edge may be 
mapped and which have to be checked can only increase. Two additional 
ideas are used to make this process more efficient. Firstly, we assign a number 
of additional labels to vertices and edges. Secondly, if an edge e can not be 
mapped according to the existing mapping for previous edges, then the next 
place where this edge can be mapped according to the labels is found, and the 
minimal match positions of previous edges are advanced in order to be 
compatible with the minimal position of e. 

6.1 Labelling 

By definition vertices and edges are already assigned labels lv and le 
correspondingly that must be preserved by isomorphism mapping. 
Additionally we use an another kind of label for both vertices and edges, 
which we call Index. 



Vertex index Index(v) is a 16-tuple of integers (containing twice as many 
elements as there are edge labels). The i-th element of Index(v) is the number 
of edges (x,v) with le((x,v)) equal to the i-th possible value of le (according to 
some initially fixed order of labels). Similarly, the (k+i)-th element of 
Index(v) is the number of edges (v,x) with le((v,x)) equal to the i-th possible 
value of le. Thus, the value Index(v) encodes the numbers of “incoming” and 
“outgoing” edges of all possible types for a given vertex v. 

Edge index Index(e) for edge e = (v,w) is a 4-tuple of integers 
<S1,S2,E1,E2>, where S1 is the number of edges (v,x) with p(x) < p(w), S2 is 
the number of edges (v,x) with p(x) > p(w), E1 is the number of edges (y,w) 
with p(y) < p(w), and E2 is the number of edges (y,w) with p(y) > p(w). The 
edge index describes how many “shorter” or “longer” other edges are 
connected to the endpoints of a given edge. 

For both vertices and edges we define Index(x) ≤ Index(y) if the inequality 
holds between the all corresponding pairs of 16-tuples (or 4-tuples). It is easy 
to see that for isomorphism mapping I for any vertex or edge x we must have 
Index(x) ≤ Index(I(x)). 

6.2 Algorithm 

We assume that graphs are given as arrays PV, PE, TV and TE, where PV is 
an array of vertices in the pattern graph with PV[i] being the vertex v with 
p(v) = i, PE is an array of edges in the pattern graph with PE[i] being the edge 
e with p(e) = i, and TV and TE are similar arrays for the target graph. 
 For an edge of pattern graph e list Matches(e) contains all possible 
positions (in increasing order) in target graph to which e can be matched 
according to vertex and edge labels and Index-es. By Matches(e)[i] we denote 
the i-th element from this list. The number Next(e) is the first position in 
Matches(e) list to which it still may be worth to try to match the edge. Initially 
for all edges we have Next(e) = 1. 
 For vertex v the number Pos(v) is the position in target graph to which 
vertex v is matched. Pos(v) = 0 for vertices for which the match still is not 
found. 
 The main loop of the algorithm is as follows. 

 
procedure SubgraphIsomorphismInOrderedGraphs(PV,PE,TV,TE) 

for all vertices e in PE do 
Compute the list Matches(e); Next(e) ← 1 

  if Matches(e) = ∅  then return Not Isomorphic 
 end for 

for all vertices v in PV do Pos(v) ← 0 
k ← 1 

 while k ≤ |PE| do 



  edge = (v,w) ← PE[k] 
  if Next(edge) > |Matches(edge)| then return Not Isomorphic 

Find the smallest i ≥ Next(edge) such that for the target graph edge 
(vt,wt) = Matches(edge)[i] and for both vertices v and w either 
Pos(v) = 0 or Pos(v) = vt and either Pos(w) = 0 or Pos(w) = wt (and 
p((vt,wt)) > Matches(PE[k−1])(Next(PE[k−1]), if k > 1) 
if such an i is found then 

Next(edge) ← i; Pos(v) ← vt; Pos(w) ← wt; k ← k + 1 
  else 

Find the smallest j ≥ Next(edge) such that (if k > 1) for the 
target graph edge (vt, wt) = Matches(edge)[j] we have  
p((vt,wt)) > Matches(PE[k−1])[Next(PE[k−1])] (take  
j ← Next(edge), if k = 1) 
Next(edge) ← j 

   for all edges e in PE with p(e) < k do Moved(e) ← false 
   (vt,wt) ← Matches(edge)[j] 
   AdvanceEdgeMatchPositions(v,vt) 

 Set k to be the smallest value for which there is an edge e = 
(v2, w2) with p(e) = k and either Pos(v2) = 0 or Pos(w2) = 0 

end if 
 end while 
 return Pos (array of vertex mappings) 
end procedure 
 
 Starting from the first edge the algorithm tries to find matches for all 
edges in increasing order and returns an array Pos of vertex mappings, if it 
succeeds. If for some edge a match consistent with matches for previous 
edges can not be found a procedure AdvanceEdgeMatchPositions is invoked, 
which tries to increase the values Next(e) for some of already matched edges 
and the matching process is continued starting from the first edge for which 
the value Next(e) has been changed. 
 Procedure AdvanceEdgeMatchPositions uses a variant of depth first 
search to find edges for which Next(e) can be increased. Alternative strategies 
are possible,  
 
procedure AdvanceEdgeMatchPositions(v,vt) 
PatternVertexStack ← empty; Push(PatternVertexStack,v) 
TargetVertexStack ← empty; Push(TargetVertexStack,vt) 

while PatternVertexStack ≠ ∅  do 
 pvert ← Pop(PatternVertexStack); tvert ← Pop(TargetVertexStack) 

for all edges e with p(e) < k, Moved(e) = false and with one endpoint 
pvert do 



Moved(e) ← true 
Find the smallest i ≥ Next(e) such that for (vt2, wt2) = Matches(e)[i] 
we have wt2 ≥ tvert (or vt2 ≥ tvert, if pvert is the “rightmost” 
endpoint of e) 
if such an i is found then 

   Next(e) ← i 
   Let newpvert be the other endpoint of e 

newtvert ← vt2 (or newtvert ← wt2, if pvert is the“rightmost” 
endpoint of e) 

   if Pos(newpvert) ≠ 0 then 
    Pos(newpvert) = 0 
    Push(PatternVertexStack,newpvert) 
    Push(TargetVertexStack,newtvert) 
   end if 
  else return Not Isomorphic 
  end for 

end while 
end procedure 

6.3 Correctness 

The informal motivation why the algorithm correctly finds an isomorphic 
subgraph (or gives the answer that no isomorphic subgraph exists) is the 
following. First, as already noted above, for connected oriented graphs the 
isomorphism mapping is completely defined by defining the mapping for 
edges. For an isomorphism mapping it is sufficient to satisfy the labelling 
constraints on edge endpoints, preserve edge order and connectivity. If the 
AdvanceEdgeMatchPositions procedure is not used, the algorithm simply 
performs an exhaustive search of all mappings satisfying these constraints and 
either finds one, or returns an answer that no such mapping exists. If the 
AdvanceEdgeMatchPositions procedure is included, then when invoked it 
receives a vertex v in pattern graph and the first vertex vt in target to which v 
may be mapped according to search performed so far. The constraints on edge 
mappings are then narrowed down to be consistent with the mapping 
requirement for vertex v. 

6.4 General case of disconnected graphs 

To deal with graphs that may be disconnected (but do not have isolated 
vertices) we additionally have to check that the vertex positions are preserved 
by isomorphism mapping, i.e., for vertices v and w in pattern graph with p(v) 
< p(w) we must have p(I(v)) < p(I(w)). If we have isolated vertices, we 
additionally have to check that the sequence of vertices between v and w is a 



substring of the sequence of vertices between I(v) and I(w). This additional 
checking can be easily incorporated into the algorithm. 

7 Maximal common subgraph problem 

The subgraph isomorphism algorithm is very fast for graphs corresponding to 
TOPS diagrams. This permits finding maximal common subgraphs by 
repeated extension and checking for subgraph isomorphism. 

In order to find the maximal common subgraph for a given set of graphs we 
basically use an exhaustive search. Starting a the simple (one vertex) pattern 
graph, we check for subgraph isomorphism against all graphs in a given set 
and in the case of success attempt to extend the already matched pattern graph 
in all possible ways. Some restrictions on the number of different types of 
edges and vertices can be deduced from the given set of target graphs and are 
used by the algorithm. Apart from that, the previous successful match may be 
used to deduce information about extensions which are more likely to be 
successful in the next match. In general this does not prune the search space 
but may help to discover large common subgraphs earlier.  There is also a 
greater probability that the largest common subgraph is found within a given 
time limit, even when the search has not been completed. 

The advantage of this approach is that we obtain an algorithm with time 
complexity that is linear with respect to the number of graphs in a given set.  
Since there are likely to be more restrictions on the pattern for larger sets, 
often the most difficult cases arise for sets containing only one graph – 
however in this case we can simply return the given graph as the maximal 
common subgraph. Other methods that are known (for example as described 
in [8]) may be more efficient for sets containing a small number (basically 
just two) of graphs, but in general cannot be used to find the exact answer to 
the problem for larger sets. 

Experiments suggest that this approach is still practical for TOPS diagrams. 
As mentioned above in the results section, all motifs in the Atlas for the 
CATH level H have been found by using repeated pattern matching and 
extension in 2 hours on an ordinary PC workstation. However it seems that 
the size of TOPS diagrams is quite close to the limit up to which such a 
maximal common subgraph algorithm can be successfully used, thus our 
solution may be quite problem specific. At the same time we expect that the 
subgraph isomorphism algorithm may be adapted also for considerably larger 
structures and may be useful for the other problems in bioinformatics. 
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