3,194 research outputs found

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA3 to CA1.

    Get PDF
    Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions

    Reflectance of Polytetrafluoroethylene (PTFE) for Xenon Scintillation Light

    Full text link
    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet wavelength region (175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Fluoropolymers, namely ETFE, FEP and PFA were also measured

    Universality and Clustering in 1+1 Dimensional Superstring-Bit Models

    Get PDF
    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an SS-matrix for closed polymers of superstring-bits.Comment: 11 pages, Latex documen

    A Lagrangian dispersion model for predicting CO\u3csub\u3e2\u3c/sub\u3e sources, sinks, and fluxes in a uniform loblolly pine (\u3ci\u3ePinus taeda\u3c/i\u3e L.) stand

    Get PDF
    A canopy Lagrangian turbulent scalar transport model for predicting scalar fluxes, sources, and sinks within a forested canopy was tested using CO2 concentration and flux measurements. The model formulation is based on the localized near-field theory (LNF) proposed by Raupach [1989a, b]. Using the measured mean CO2 concentration profile, the vertical velocity variance profile, and the Lagrangian integral timescale profile within and above a forested canopy, the proposed model predicted the CO2 flux and source (or sink) profiles. The model testing was carried out using eddy correlation measurements at 9 m in a uniform 13 m tall Pinus taeda L . (loblolly pine) stand at the Blackwood division of the Duke Forest near Durham, North Carolina. The tree heightand spacing are relatively uniform throughout. The measured vertical profile leaf area index (LAI) was characterized by three peaks, with a maximum LAI occurring at 6.5 m, in qualitative agreement with the LNF source-sink predicted profile. The LNF CO2 flux predictions were in better agreement with eddy correlation measurements (coefficient of determinatior r2=0.58; and standard error of estimate equal to 0.16m kg-1 m s-1) than K theory. The model reproduced the mean diurnal CO2 flux, suggesting better performance over longer averaging time periods. Two key simplifications to the LNF formulation were considered, namely, the near-Gaussian approximation to the verticalvelocity and the absence of longitudinal advection. It was found that both of these assumptions were violated throughout the day, but the resulting CO2 flux error at 9 m was not strongly related to these approximations. In contrast to the forward LNF approach utilized by other studies, this investigation demonstrated that the inverse LNF approach is sensitive to near-field corrections

    Optimization of the Touchscreen-Based Visuomotor Conditional Learning Task in Mice

    Get PDF
    The translational gap between animal models and clinical trials is a longstanding, yet largely unresolved, limitation in the study of cognition. This discrepancy is largely due to the differences in how cognition is assessed in animal models compared to those in clinical populations. In the stimulus-response (S-R) learning literature, for example, the techniques used to assess the acquisition of habitual behaviour differ greatly across species, leading to poor cross-species translation and often conflicting results. As a result, we set out to optimize a S-R learning task in mice using the touchscreen-based operant technologies. Similar to human studies, this touchscreen technique encourages animals to respond to visual stimuli displayed on a touchscreen according to a specific rule. Allowing for very similar, if not identical, cognitive assays in mice and men, this technique promotes high translational potential and a high degree of standardisation. Originally developed for rats, the Visuomotor Conditional Learning (VMCL) task encourages animals to learn arbitrary associations between visual stimuli and motor responses. In naĂŻve C57BL/6 mice, we sought to optimize VMCL task parameters to promote better and more efficient responding, identifying the length of inter-trial intervals and the limited hold period as two potential candidates. The validation of this task will provide a novel means through which to study the neural correlates of S-R learning, and its use in conjunction with fiber photometry recordings may be provided

    Archaeal diversity in the Dead Sea: Microbial survival under increasingly harsh conditions

    Get PDF
    The Dead Sea is rapidly drying out. The lake is supersaturated with NaCl, and precipitated of halite from the water column has led to a decrease in sodium content, while concentrations of magnesium and calcium greatly increased, making the lake an ever more extreme environment for microbial life. In the past decades, blooms of algae (Dunaliella) and halophilic Archaea were twice observed in the lake (1980-1982 and 1992-1995), triggered by massive inflow of freshwater floods, but no conditions suitable for renewed microbial growth have occurred since. To examine whether the Death Sea in its current state (density 1.24 g ml-1, water activity about 0.67) still supports life of halophilic Archaea, we collected particulate matter from a depth of 5 m at an offshore station by means of tangential filtration. Presence of bacterioruberin carotenoids, albeit at low concentrations, in the particulate material showed the members of the Halobactericacae were still present in the lake\u27s water column. Amplification of 16S rRNA genes from the biomass yielded genes with less than 95% identify with environmental sequences reported from other environments and only 85-95% identity with cultivated Halobacteriaceae. It is thus shown that the Dead Sea, in spite of the ever more adverse conditions to life, supports a unique and varied community of halophilic Archaea. We have also isolated a number of strains of Halobacteriaceae from the samples collected, and their characterization is currently in progress

    The Endosymbiotic Coral Algae Symbiodiniaceae Are Sensitive to a Sensory Pollutant: Artificial Light at Night, ALAN

    Get PDF
    Artificial Light at Night, ALAN, is a major emerging issue in biodiversity conservation, which can negatively impact both terrestrial and marine environments. Therefore, it should be taken into serious consideration in strategic planning for urban development. While the lion’s share of research has dealt with terrestrial organisms, only a handful of studies have focused on the marine milieu. To determine if ALAN impacts the coral reef symbiotic algae, that are fundamental for sustainable coral reefs, we conducted a short experiment over a period of one-month by illuminating isolated Symbiodiniaceae cell cultures from the genera Cladocopium (formerly Clade C) and Durusdinium (formerly Clade D) with LED light. Cell cultures were exposed nightly to ALAN levels of 0.15 ÎŒmol quanta m–2 s–1 (∌4–5 lux) with three light spectra: blue, yellow and white. Our findings showed that even in very low levels of light at night, the photo-physiology of the algae’s Electron Transport Rate (ETR), Non-Photochemical Quenching, (NPQ), total chlorophyll, and meiotic index presented significantly lower values under ALAN, primarily, but not exclusively, in Cladocopium cell cultures. The findings also showed that diverse Symbiodiniaceae types have different photo-physiology and photosynthesis performances under ALAN. We believe that our results sound an alarm for the probable detrimental effects of an increasing sensory pollutant, ALAN, on the eco-physiology of symbiotic corals. The results of this study point to the potential effects of ALAN on other organisms in marine ecosystem such as fish, zooplankton, and phytoplankton in which their biorhythms is entrained by natural light and dark cycles
    • 

    corecore