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A Lagrangian dispersion model for predicting 
sources, sinks, and fluxes in a uniform 1oblolly pine 
(Pinus taeda L.) stand 

Gabriel Katul, • Ram Oren, David Ellsworth, 2 Cheng-I Hsieh, and Nathan Phillips 
School of the Environment, Duke University, Durham, North Carolina 

Keith Lewin 

Department of Applied Sciences, Brookhaven National Laboratory, Upton, New York 

Abstract. A canopy Lagrangian turbulent scalar transport model for predicting scalar 
fluxes, sources, and sinks within a forested canopy was tested using CO2 concentration and 
flux measurements. The model formulation is based on the localized near-field theory 
(LNF) proposed by Raupach [1989a, b]. Using the measured mean CO2 concentration 
profile, the vertical velocity variance profile, and the Lagrangian integral timescale profile 
within and above a forested canopy, the proposed model predicted the CO2 flux and 
source (or sink) profiles. The model testing was carried out using eddy correlation 
measurements at 9 m in a uniform 13 m tall Pinus taeda L. (loblolly pine) stand at the 
Blackwood division of the Duke Forest near Durham, North Carolina. The tree height 
and spacing are relatively uniform throughout. The measured vertical profile leaf area 
index (LAI) was characterized by three peaks, with a maximum LAI occurring at 6.5 m, in 
qualitative agreement with the LNF source-sink predicted profile. The LNF CO2 flux 
predictions were in better agreement with eddy correlation measurements (coefficient of 
determination r 2 - 0.58; and standard error of estimate equal to 0.16 mg kg -1 m s -1) 
than K theory. The model reproduced the mean diurnal CO2 flux, suggesting better 
performance over longer averaging time periods. Two key simplifications to the LNF 
formulation were considered, namely, the near-Gaussian approximation to the vertical 
velocity and the absence of longitudinal advection. It was found that both of these 
assumptions were violated throughout the day, but the resulting CO2 flux error at 9 m was 
not strongly related to these approximations. In contrast to the forward LNF approach 
utilized by other studies, this investigation demonstrated that the inverse LNF approach is 
sensitive to near-field corrections. 

1. Introduction 

Quantifying the transfer of CO2 and other scalar entities 
from leaves to the canopy scale continues to be a subject of 
active research [e.g., Wofsy et al., 1993]. To properly quantify 
this transfer, detailed understanding of the canopy transport 
processes and the structure of turbulence within and above the 
canopy is required. The most comprehensive approach to 
quantify canopy scalar transport processes is to consider the 
scalar mass conservation equation given by 

OC OC 02C 
+ V• =• (•) O t •x; O xjO xj 

where C is the instantaneous concentration of a scalar entity, 
k c is the molecular diffusivity of the scalar C, U s (j = 1, 2, 3) 
are the instantaneous velocity components (U• = U, U2 = V, 
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and U 3 = W), t is time, and x i is the space coordinate system 
(x• = x, x 2 = y, x 3 = z), with x•, x2, and x 3 aligned along 
the longitudinal, lateral, and vertical directions, respectively. In 
this study, both meteorological and tensor notations are used 
interchangeably. The turbulent eddy motion inside the canopy is 
highly erratic and intermittent, so it is customary to apply Reyn- 
olds decomposition (U i: (Ui} + ui; C = (C} + c) to (1) 

a(c) a(a(c) ) + (u,) : (.,c) (2) 
Ot Oxj Ox• Ox• 

where angle brackets denote ensemble averaging assumed to 
converge to the time averaging by the ergodic hypothesis [Mo- 
nin and Yaglom, 1971, pp. 215-218, 249-256] and (u•} and 
are both zero. Here, capital and lowercase letters represent 
instantaneous variables and turbulent fluctuations, respec- 
tively. Notice in (2) that both {C} and the covariance {u•c} are 
unknown, and thus, (2) is not "closed." 

As discussed by Raupach [1988], a popular closure approx- 
imation, known as K theory, assumes that the local relationship 
between the turbulent vertical flux of a scalar entity (Fc = 
{wc}) and the mean concentration gradient is given by 

Fc(z) = -K(z) dz (3) 
9309 



9310 KATUL ET AL.: LAGRANGIAN DISPERSION MODEL FOR CO2 IN A PINE STAND 

where K(z) is the eddy diffusivity. The K theory, or an Ohm's 
law resistance analog to K theory are widely used in climatic, 
hydrological, and ecological models such as the big-leaf model 
[e.g., Van den Hurk and McNaughton, 1995; McNaughton and 
Van den Hurk, 1995; Dolman and Wallace, 1991; Meyers and 
Baldocchi, 1988; Dyer and Hicks, 1970]. However, based on the 
detailed experiments of Denmead and Bradley [1985], it is rec- 
ognized that K theory is inadequate for describing turbulent 
fluxes from local gradients within the canopy due to the strong 
variability in the sources and sinks of the scalar C, and due to 
the possible occurrence of countergradient transfer [also Rau- 
pach, 1988; Wilson, 1989; Thurtell, 1989]. Also, as noted by 
Corrsin [1974] and Raupach [1988], K theory is justifiable if the 
length scale of turbulent motion which maintains the turbulent 
flux F c is much smaller than the length scale responsible for 
changes in the mean gradient (d(C)/dz). Corrsin's [1974] con- 
dition for the application of K theory is violated in many 
canopy environments since the variability in sources and sinks 
of C introduces large variability in the profile of (C) within the 
canopy over short distances as evidenced by the data of Rau- 
pach [1988], 14qlson [1989], and Thurtell [1989]. A suite of 
higher-order Eulerian closure models have been developed to 
circumvent some of the limitations of K theory [e.g., Meyers 
and Paw U, 1986, 1987; Finnigan and Raupach, 1987; Meyers 
and Baldocchi, 1988]. However, these models appear to be still 
flawed because gradient transfer schemes, analogous to K the- 
ory, are generally employed to attain closure for the higher- 
order statistics [e.g., Deardorff, 1978; Sawford, 1985; Raupach, 
1988; Baldocchi, 1992]. 

Lagrangian models, which consider the mass conservation 
equation by following an infinitesimal control volume moving 
with the fluid (material particle), circumvent some of the prob- 
lems encountered in higher-order Eulerian closure models. A 
key advantage to the Lagrangian models is their ability to 
explicitly account for the particle history and thus their ability 
to account directly for the coherency in the turbulent transfer 
within canopies. As in Eulerian models, Lagrangian models 
vary in complexity as to how the particle trajectory is described 
in relation to observed features of canopy turbulence. A key 
disadvantage of Lagrangian models is their inability to com- 
pute the velocity field within the flow domain of interest. This, 
in part, is due to the strong nonlinearity in the resulting equa- 
tions of motion in the Lagrangian frame of reference [Monin 
and Yaglom, 1971, pp. 531-532]. 

As discussed in the review by Raupach [1988], canopy trans- 
port experiments over the last 3 decades clearly demonstrated 
that canopy turbulence, especially in forests, is (1) inhomoge- 
neous, (2) coherent and persistent with finite integral time- 
scales, and (3) non-Gaussian with vertical velocity skewness 
values up to -1.5. Early analytic solutions to homogeneous 
and Gaussian turbulence diffusion problems developed by Tay- 
lor [1921] yield useful results that clearly demonstrate the im- 
portant role of coherency in turbulent transport but do not 
account for the inhomogeneity and non-Gaussian distribution 
of the velocity statistics. On the other extreme, recent "random 
walk" and "random flight" models have been proposed to 
simulate particle trajectory in inhomogeneous [Horst and Well, 
1992; Leclerc and Thurtell, 1990; Leclerc et al., 1988; Thomson, 
1987; Sawford, 1985; Ley and Thomson, 1983; Wilson et al., 
1983; Legg and Raupach, 1982; Wilson et al., 1981a, b; Reid, 
1979] and non-Gaussian turbulence [Sawford, 1986, 1993; Wil- 
son and Flesch, 1993; Luhar and Britter, 1989; Duet al., 1994]. 
However, random flight models suffer from mathematical 

problems in strongly non-Gaussian turbulence, and the calcu- 
lations are lengthy and noisy due to the large number of par- 
ticles and time steps required. 

Raupach [1983, 1988, 1989a, b] proposed the "localized 
near-field theory" or LNF, which is an intermediate class of 
models between the analytic theories of Taylor [1921] for 
Gaussian homogeneous turbulence and the complex random 
flight models. The LNF theory is capable of incorporating the 
nonhomogeneity and persistency of turbulence, but is incapa- 
ble of incorporating the non-Gaussian distribution of the ve- 
locity statistics when compared to random flight models. 

Whether LNF is a significant improvement over K theory in 
practical field applications remains unresolved. Support for the 
usefulness of LNF is evidenced by the wind tunnel and field 
experiments presented by Raupach [1989a] and Raupach et al. 
[1992]. However, Van den Hurk and McNaughton [1995], Mc- 
Naughton and Van den Hurk [1995], and Dolman and Wallace 
[1991] report that the LNF near-field corrections are minor 
and K theory is adequate for describing mass and heat fluxes 
from canopies. We note that both the Dolman and Wallace 
[1991] and Raupach et al. [1992] field experiments were over 
short crops (not exceeding 3 m). 

The objective of this study is to evaluate the usefulness of 
LNF in predicting the relationship between the sources and 
sinks, turbulent fluxes, and mean concentrations of CO2 in a 
complex canopy environment such as a forest. An experiment 
was carried in an 11-13 m tall uniform-aged and managed 
loblolly pine stand, where profiles of mean CO2 concentra- 
tions, CO2 turbulent fluxes, and other velocity statistics were 
measured. The specific objectives of this study are to predict 
the diurnal variation of CO2 fluxes from profile measurements 
and other velocity statistics using LNF, to investigate the CO2 
flux errors resulting from the Gaussian distribution and the 
neglect of advective transport in LNF, and to compare LNF 
and K theory CO2 flux predictions within the forested system. 

2. Theory 
In the Lagrangian frame of reference, the motion of an 

infinitesimal material particle of air can be described by 

Xi(t) = X•(to) + Ui(s ) ds (4) 
o 

where X i (= X•, X2, X3) is the position vector from a preset 
origin, Ui are the Lagrangian velocity components of the air 
parcel, and Xi(to) is the initial position vector of the air parcel 
at time t o. The Navier-Stokes equations describing the time 
evolution of the Eulerian velocity components can be trans- 
formed into the Lagrangian frame of reference [e.g., Monin 
and Yaglom, 1971, pp. 531-532] to obtain an equation for Ui; 
however, such a transformation results in viscous interaction 
forces that are described by nonlinear terms of the fifth degree 
in the variable X i. Thus the solution to the Lagrangian equa- 
tions of motion for Ui is much more difficult than their Eule- 
rian counterpart. 

In this study an infinitesimal material particle of air (or air 
parcel) is defined as a tiny connected lump of air containing 
many molecules of material C and is smaller in size than the 
smallest eddy size within the canopy [e.g., Hunt, 1982]. The 
smallest eddy is of the order of the Kolmogorov microscale 
T}( = [ V3/(STKE)] 1/4 '• 1 mm), where •, is the air kinematic viscosity, 
and (eTICE) is the mean turbulent kinetic energy dissipation rate 
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per unit mass of fluid. For this air parcel, the conservation of mass 
for a scalar C, such as CO2, at position Xi is given by 

dC(Xi, t) O2C(Xi, t) 
: (s) dt OXiOX i 

Hence the air parcel changes its concentration only by molec- 
ular diffusion. The Lagrangian dispersion theory within the 
canopy utilizes the conservation of mass in (5) as follows: 

1. Scalar sources and sinks, which are molecular fluxes at 
the leaf-atmosphere interface, are defined by a source density 
function S (Xi, t), with dimensions of mass of C per unit mass 
of air per unit time. At the leaf source locations, S(Xi, t) is 
nonzero, but it is zero everywhere else. Throughout this study, 
we refer to S (Xi, t) as a source, but it is understood that S (X•, 
t) can be positive (source) or negative (sink). 

2. Molecular diffusion in (2) is negligible, so (5) reduces to 
dC/dt = 0, except at the source location where dC/dt = 
S(X•, t). That is, once the air parcel is in contact with a source, 

mogeneous turbulence and serves as the main introduction to 
LNF theory. In the case of steady homogeneous turbulence with 
zero mean vertical velocity (W(t)).= 0, the Eulerian velocity sta- 
tistics are nonbiased samples of the Lagrangian velocity statistics 
[see Pasquill and Smith, 1983, pp. 80-84; Fischer et al., 1979, pp. 
60-61; McComb, 1990, pp. 447-449]. In this case, if an ensemble 
of marked air parcels (marked by a tracer such as CO2) are 
released from a point source at t = 0 and z - 0, then the averaged 
depth at time t of the resulting cloud is related to the velocity 
statistics by Taylor's [1921] kinematic theorem, 

f0 t dt = 2cr2w RL(s) ds (7) 

where cr z : ([Z(t) - (Z(t))]2) •/2, Ri.(s) = (W(t)W(t + 
2 is the Lagrangian autocorrelation function of W(t) at 

2 

time lag s, and cr w = (W(t)2) is the root-mean-square La- 
grangian vertical velocity, assumed to be identical to the Eu- 

it changes its concentration, but retains that concentration as it • lerian vertical velocity variance [Tennekes and Lumley, 1972]. 
disperses by the turbulent velocity field. 

3. The thin laminar boundary layers around individual 
leaves are considered as part of the source term S(Xi, t). That 
is, the variation of the leaf boundary layer thickness is small 
enough so that S(Xi, t) can be treated as a point source 
relative to the air volume within the canopy. 

These assumptions are valid if the airflow inside and above 
the canopy is at a high enough Reynolds number (R e = 
UrLr/v) and Peclet number (Pe = UrLr/kc) so that the rate 
of change of concentration due to molecular diffusion is neg- 
ligible. Here, Ur and L r are characteristic turbulent velocity 
and length scales, respectively. 

2.1. Steady Homogeneous Turbulence 

In stationary, horizontally homogeneous canopy conditions, 
the mean concentration of a scalar C(z, t) is related to the 
statistics of an ensemble of dispersing marked fluid parcels at 
a given vertical location (z) and time (t) by 

(C(z,t))-f f P(z, tzo, to)S(zo, to) dzodto (6) 

The Lagrangian autocorrelation function is well approximated by 
an exponential form [Snyder and Lumley, 1971] and is given by 

RL(s) = exp (-s/TD (8) 

where T/. is the Lagrangian integral timescale [Tennekes and 
Lumley, 1972, pp. 229-230; Csanady, 1973; Corrsin, 1963]. 
Hence (7) can be solved for crz(t) to give 

(O'z(t)) 2 2 2( t : 2crwT•. •r 1 + exp (-t/TO (9) 
In a steady homogeneous flow the distributions of W(t) and 
Z(t) are both Gaussian, so the transition probability density 
function P(z, tl0, 0) is determined by 

P(z, tO, 0): 2• crz(t) exp 2O.z(t52 (10) 
Since crz(t ) is related to the velocity statistics by (9), (10) shows 
how the transition probability density function is explicitly re- 
lated to the velocity statistics. Also, as discussed by Raupach 
[1988], (9) suggests that the turbulence dispersion follows differ- 
ent dynamics in the limits when t >> TL and t << T L. That is, 

where angle brackets denote ensemble averaging, S(zo, to) is 
a source or sink strength of the scalar from a unit volume of 
leaves, P(z, tlzo, to) is the transition probability density func- 
tion that defines the probability of an air parcel released at 
time to from a position z o being observed at time t and position 
z [see McComb, 1990, pp. 436-459]. Since the air parcel con- 
centration directly measures the source strength, (6) states that 
the ensemble concentration can be interpreted as a weighted 
average concentration, where the weights are given by the 
transitional probability density functions. The main challenge 
in Lagrangian dispersion modeling is to specify P(z, t]Zo, to) 
from readily measured Eulerian velocity statistics. As noted 
earlier, the solution to the Navier-Stokes equations in the 
Lagrangian frame of reference can produce the statistics of Ui, 
but these equations are much more difficult to solve due to the 
nonlinearity in the viscous forces when compared to their Eu- 
lerian counterpart. Hence, within the context of Lagrangian 
models, the velocity statistics are assumed to be known or can 
be related to their Eulerian counterpart. 

The relation between P(z, tlzo, to) and the velocity statistics 
was first carried out by Taylor [1921] for the case of steady ho- 

t )1/2 Crz(t) : xf• crwr•. • - 1 t/rL>> 1 

trz(t) = xf• crwrL • t/r•<< 1 
Hence, when the travel time is large (far field), the dispersion 
of particles by turbulence produces a cloud with depth increas- 
ing as t 1/2. Thus the turbulence dispersion in the far field can 
be described as diffusive. This is not the case for small t/TL 
(near field), where the cloud depth defining the mean trajec- 
tory grows linearly with time next to the source (see Figure l a; 
also see Raupach [1989a]). Hence the turbulence dispersion in 
the near field close to a source is considered nondiffusive. 

Within the near field the travel time is smaller than the integral 
timescale, and hence S(z, t) variability within the canopy 
volume significantly contributes to the mean concentration due 
to turbulence persistence and finite integral timescales. In the 
far field, persistence is not significant and turbulence is diffu- 
sive. This is the essence of LNF theory as derived by Raupach 
[1983, 1988, 1989a, b]. Much of the material below is presented 
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Point 
Source 

ß 

(•z=(•wt 

Time (t) 

Far 
Field 

(Jz=(2(JwTL(t-TL))1/2 

Figure la. Definition of Lagrangian variables. 

by Raupach [1989a, b]. For completeness, we review the main 
steps in the derivation of LNF to highlight key assumptions that 
are known to be violated within the plant canopy environment. 

2.2. Localized Near-Field Theory 

The CO2 in a canopy is being emitted (or absorbed) by a 
large number of point sources or sinks at the organ scale (leaf, 
branch, or stem section) inside the canopy volume. The leaves 
per unit volume are approximated by point sources or sinks 
relative to the airflow inside the canopy. The plumes emitted 
from each leaf volume pass through both the near-field and 
far-field dispersion regimes; hence at a tower or measurement 
location inside the canopy, plumes at all stages of evolution 
occur, and the concentration is the superposition of all these 
plumes (see, e.g., Figure lb and Kaimal and Finnigan [1994, p. 
92]). The near-field contribution to the dispersion occurs at 
timescales up to TL. In order to relate this timescale to a 
physical dimension, we note that within a canopy of height h, 
T L ,-- h/o-w, and (U) --- o- w, so an estimate of the maximum 
travel distance that will be significantly influenced by the near 
field is (U)TL --- h. Hence all leaves that are within a distance 
h from the measurement point will contribute, in a nondiffu- 
sive manner, to the mean concentration at that point. 

The LNF theory derives P(z, tlzo, to) for nonhomogeneous 
turbulence as a function of the velocity statistics accounting for 
near- and far-field differences in dispersion regimes. For that 
purpose, Raupach [1989a, b] decomposed the transition prob- 
ability density function into two components, 

P(z, tlzo, to) - P•(z, tlZo, to + TL) + P•(J, tlzo, to) 

where Pf and Pn are the far-field and the near-field transition 
probability density functions, respectively. In order to arrive at 
an analytic description of the transition probability density 
function, Raupach [1989a, b] suggested constructing a purely 
artificial diffusive plume that (1) is identical to the real disper- 
sion cloud at the far field (i.e., P(z, tlZo, to) - Pf(z, tlzo, 
to)), and (2) best matches Pn for timescales comparable to T• 
(although LNF cannot exactly match P•). Since P• is unknown 
for inhomogeneous turbulence, Raupach suggested estimating 
P• assuming locally homogeneous turbulence with a velocity 
and timescale O-w(Zo) and T• (Zo) using the analytic theory of 
Taylor [1921]. The best match between this artificial diffusive 
cloud and the real cloud is when P(z, t[z o, to) approaches 
P•(z, tlZo, to) as (t - to)/r• becomes very large, and P(z, 
tlzo, to) approaches P,•(z, tlzo, to) when (t - to)/T • is much 

smaller than unity. Since P,•(z, t z o, to) is unknown, it can be 
approximated by its value determined in a locally homoge- 
neous turbulence with velocity and timescales O'w(Zo) and 
TL (Zo). For homogeneous turbulence both P(z, t Zo, to) and 
PT(Z, t Zo, to) are known from the analytic results of Taylor 
[1921], and thus ?•(z, t Zo, to) can be determined. That is, 
LNF does not explicitly account for the nonhomogeneity in 
turbulence for determining P•. Within the canopy the turbu- 
lence is not homogeneous, and o- w and T L vary with height. To 
account for this nonhomogeneity in the far field, Raupach 
[1989a] suggested that KT be replaced by Kf(z) = 
O'w(z)2TL(Z). This approximation is satisfactory for near- 
neutral conditions and in plant canopies, but is unsatisfactory 
for convective boundary layers. Numerical simulations using 
Sawford's [1986] random flight approach suggest that this KT 
approximation is valid if d[ (o-,•(z) T L (z) ]/dz does not exceed 
0.4 (i.e., when the turbulence is weakly inhomogeneous). It is 
exact for homogeneous turbulence. 

Next, we consider an extensive canopy with negligible ad- 
vection so that a balance between the turbulent flux through a 
plane parallel to the ground surface at height z from the 
ground and the source profile is given by 

Fc(z) = Fc(O) + S(z) dz (•3) 

where Fc(z ) = (wc) is the turbulent flux at height z, and 
F c(O ) is the ground flux. For this canopy, analogous to the 
transition probability density function, the mean concentration 
can also be decomposed into a far-field Cf(z, t) and a near- 
field C•(z, t) so that 

C(z, t) = G(z, t) + C•(z, t) 

f O © • t-rL(zo) C/(z, t) = S(zo) Pt(z, t Zo, t 
"0 

+ TL(zo)) dto dzo (14) 

C•(z, t) -- S(zo) P•(z, t Zo, to) dto dzo 

Based on the previously proposed idealized diffusive cloud, 
Raupach [1983; 1989a, b] showed that the far-field and near- 
field concentrations are best matched if 

• Canopy Layer 
Fc 

Figure lb. Conceptual framework for the application of La- 
grangian models in forested ecosystems from Kaimal and 
Finnigan [1994]. 



KATUL ET AL.' LAGRANGIAN DISPERSION MODEL FOR CO2 IN A PINE STAND 9313 

ZR C/(z) = C(za) - Cn(za) + [F(z)/K/(z)] dz 

fo • S(zo) C•(z) = •w(Z0) [k•( Z-Zo 

Z +Zo + k. rrw(Zo)TL(Zo) (15) 

1 f0•exp(--s)( --x2 ) k•(x) = 2• o-(s) exp. 2o_2(s) ds 
• -0.39894 In [1 - exp (- xl)] 

-0.15623 exp (- x ) 

where k,, is a near-field kernel function, and the approximation 
to k,, in (15) is derived by Raupach [1989b]. Though this 
artificial diffusion cloud does not match the true near field for 

nonhomogeneous turbulence within the plant canopy, it does 
account for near-field effects on the mean concentration had 

the turbulence been locally homogeneous with a velocity 
rrw(Zo) and timescale T L (Zo). This completes the Lagrangian 
description of the relationship between S (z), C (z), and F (z). 
Notice in (15) that if S(z), rrw(Z ), and TL(z) are known, 
F(z) can be estimated from (13), and the concentration profile 
can be estimated from (14) and (15). This approach was called 
the "forward problem" by Raupach [1989a]. 

The "inverse problem" is defined as follows: given rrw(Z ), 
TL(z), and C(z) (rather than S(z)), can we use (13), (14), 
and (15) to solve for S(z) and F(z). It is this "inverse" prob- 
lem that is of interest in practice, since S (z) cannot be directly 
measured in forested canopies. The solution of the inverse 
problem is considered next. 

2.3. The Inverse LNF Problem 

In practice, profile measurements are made at discrete lay- 
ers, and thus the solution to the inverse problem is done in a 
discrete form. In this section we review the key steps in the 
work by Raupach [1989a] of how to use discrete concentration 
measurements to predict S(z) and F(z) in conjunction with 
either measured or assumed profiles of rrw(z ) and Tr(z) 
within and above the canopy. 

1. The canopy is divided into m horizontal layers, each having 
a uniform source density Sj over dz/(:zj - zi_•), wherej: 1, ..., 
m. Any scalar flux originating from the ground is lumped with the 
source term from the lowest layer. 

2. The concentration measurements Ci within and above the 
canopy are available at n measurement heights (i - 1,.-., n). 

3. The rrw(z) and T• (z) profiles within and above the 
canopy are measured or estimated. While both of these statistics 
are Lagrangian quantities, they may be estimated from Eulerian 
velocity and integral timescale statistics. This will be further dis- 
cussed in the results and discussion section. For the purpose of 
this section, it is assumed that rr•(z) and TL(z) are known. 

4. A dispersion matrix is computed from 

Cl -- CR 

D1• = S• dz• (16) 
as follows' Place a unit source at height z •, and compute the 
resulting concentration profile c i at all heights z i for i = 1 to 

n relative to the reference height c R. Repeat the calculations 
by placing the unit source at z2, z3, "', Zm until all elements 
of the dispersion matrix D ij are computed. The estimation of 
the concentration profile from each unit source is carried out 
using the LNF formulation described in (13), (14), and (15) 
with the given profiles of rrw(Z ) and Tz•(z) and a unit S as 
input (the forward problem). It should be noted that the far- 
field concentration is estimated by neglecting longitudinal ad- 
vection within the canopy. This assumption will be evaluated in 
the results and discussion section. 

5. Once D u is known, the concentration profile and the 
source profile S• can be determined by the superposition prin- 
ciple. This principle states that if source densities S• and S2 
produce concentration fields C 1 and C2, then a source density 
S1 + S2 produce a concentration field C1 + C2 [also Monin 
and Yaglom, 1971, pp. 591-606]. More formally, 

j=m 

C1 - Ca = • Di;S; dz; 
j=l 

(•7) 

If m - n, the above equation involves solving m linear 
equations with m unknowns for the source profile (S•; j = 
1, ..., m), since the dispersion matrix D i• and C i are known. 
The flux profile can be estimated from (13). Raupach [1989a] 
noted that the solution to this system is very sensitive to small 
errors in the concentration measurements or the estimation of 

rrw(Z ) and T• (z). Hence one approach to overcome this dif- 
ficulty is to include some redundant concentration data in the 
estimation of S• from C i, such that the m source strength 
densities are estimated from n concentration measurements 

with m < n. Hence Raupach [1989a] proposed a least squares 
approach that best describes the measured Ci profile (i = 1,..., 
n) from Sj (j = 1,..., m) by minimizing the squared error 

n 

g 

where e is the mean square error in the predicted profile (C,) 
from S/, and (7, is the measured concentration profile. Replac- 
ing (18)in (17), 

2 
] --•/T/ 

E OqSj dz;- (C,- Ca) 
1=1 

The values Ss that minimize e are given by 

(19) 

OS-•: 0 j: 1, 2,..., m (20) 
which results in m linear equations with m unknowns (= Ss). 
These equations are of the form 

• As/•S/• = Bs, 
k--1 

As/• = • Dis dz, D1/• dz/• 
t=l 

(21) 

1=tl 
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Figure 2. The measured cumulative and actual leaf area in- 
dex (LAI) profile at the tower facility. 

Hence using the measured •i, and by estimating D o from 
trw(Z ) and TL(Z), Sj can be determined by solving the above 
m equations. Since Sj is estimated, F c can be computed from 

Sj = dzj (22) 
This completes the review of the LNF "inverse problem" in the 
absence of advective transport as outlined by Raupach [1989a]. 

3. Experiment 
In order to investigate the usefulness of LNF to predict 

sources and fluxes of CO2 in forests, an experiment was carried 
out on September 19, 1994. The site is a 1000 m x 300 m 12 
year old managed Pinus taeda L. (loblolly pine) stand patch 
within the Blackwood division of the Duke Forest in Durham, 
North Carolina (35ø98'N, 79ø8'W, elevation = 163 m). Further 
details about the site and understory species composition can 
be found in the work by Ellsworth et al. [1995]. The site is 
equipped with a 20 m walkup tower situated some 100 m from 
the southern edge and 50 m from the western edge. The mea- 
surements consisted of (1) CO2 mean concentration profiles, 
(2) CO2 eddy correlation fluxes at z = 9 m, and (3) supporting 
turbulent velocity statistics within and above the canopy. 

The three velocity components (U•, U2, U3) and air tem- 
perature (T) were measured using a Gill triaxial ultrasonic 
anemometer at 13 m above the ground surface (see Katul 
[1994] and Katul et al. [1995] for anemometer details). The 
sonic path of the Gill anemometer is 0.149 m. The measure- 
ments were corrected for transducer shadowing effects and 
rotated so that the U• is aligned along the mean longitudinal 
wind direction at the canopy top every 20 min. Two Campbell 
Scientific (CA27) one-dimensional sonic anemometers, situ- 
ated at 9 m and 14 m above the ground surface, were also 
available during this experiment and provided direct measure- 
ments of T•r and •r w. The CA27 sonic inside the canopy was 
situated at least 60 cm (4 times the path length) from the 
nearest leaf to avoid any potential interferences between the 
reflected sonic wave from the CA27 sonic transducer and the 

waving motion of the leaves. 
A fast response LICOR 6262 CO2/I-I20 gas analyzer with 10 

Hz sampling capability was used to sample the CO2 concen- 
tration at 9.0 m using a 10 L min -• flow rate. The peak-to-peak 

noise level for the CO2 output channel was below 0.3 ppm. A 
Campbell Scientific Krypton hygrometer (KH20), colocated 
with the CA27 at 9.0 m, was used to check tube attenuation 
and lag response time of the LICOR 6262 water vapor signal. 
Appendix A presents a comparison between the two water vapor 
measurements and the lag time corrections applied to the CO2 
time series prior to estimating the covariance between the CO2 
concentration and the CA27 vertical velocity time series. 

The measurements of CO2 profiles were carried out using a 
LICOR 6252 gas analyzer at six elevations (1, 3, 6, 9, 12, and 
19.5 m), sequentially. The concentration measurement at each 
level required 1.25 min dwell time in order to purge the exist- 
ing air and for the gas analyzer to determine the 1 min average 
CO2 concentration. In order to insure steadiness in the mean 
meteorological conditions, the CO2 concentration profile data 
were averaged every 20 min (three measurements per level). 
Due to the availability of two CO2 measurements at 9.0 m, a 
comparison between the mean CO2 concentration obtained 
from the 10 Hz LICOR 6262 (N = 12,000 points) instrument 
and the CO2 LICOR 6252 gas analyzer was carried out in 
Appendix B. 

A 21X Campbell Scientific micrologger was used to sample 
the five analog velocity signals, the Gill triaxial sonic anemom- 
eter temperature signal, the KH20 Krypton hygrometer signal, 
and the two LICOR 6262 CO2/H20 signals at 10 Hz. The data 
from the 21X were transferred via an optically isolated RS232 
interface (Campbell Scientific SC32A) to a portable personal 
computer and stored on a hard drive for future processing. 
While the 50 m fetch was small for southerly wind conditions, 
the winds above the canopy were predominantly from the 
north for this day. Also, it should be noted that the eddy corre- 
lation measurements were performed inside the canopy and the 
fetch was not as critical as for surface layer experiments. 

The shoot silhouette area index, a value analogous to the 
leaf area index (LAI), was measured in the vertical by a pair of 
LICOR LAI 2000 plant canopy analyzers on September 9, 
1994, and is shown in Figure 2. The data in Figure 2 were not 
corrected for foliage aggregation as can be common in conifer 
trees. Hence the values are only used for qualitive comparisons 
with the LNF-predicted source/sink profiles. Notice in Figure 2 
that three peaks in the LAI profile are evident, but the maxi- 
mum LAI is at 6.5 m. Also, from Figure 2, the LAI contribu- 
tion of the understory is significant relative to the overall LAI. 

The CO2 profiles and turbulence statistics measurements 
were used to estimate the mean source strength and turbulent 
flux profiles. The predicted CO2 turbulent fluxes were com- 
pared with direct eddy correlation measurements on a 20 min 
time step throughout the day. 

4. Results and Discussion 

4.1. Estimation of •r w and T• Profiles 

The vertical velocity variance profile was determined every 
20 min from the velocity measurements as follows: (1) For z > 
14 m, a constant value identical to the measured value at z = 
14 mwas used. (2) Forz > 9 m andz < 14 m, a linear 
interpolation between the measurements was carried out. (3) 
For z > 0 and z < 9 m, a linear functional form was used 
between the measured values at 9 m (trw(9)) and an estimated 
trw(0 ) = 0.3trw(9 ). The factor 0.3 was determined from 
Raupach [1988]. It is assumed that these Eulerian vertical 
velocity measured statistics are unbiased samples of the La- 
grangian values [Pasquill and Smith, 1983]. We also compared 
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Figure 3c. Similar to Figure 3b, but for the mean GO 2 con- 
centration at six levels. 

our measurements with the measurements reported by Rau- 
pach [1988] for z/h = 1.0 by comparing the relationship 
between cr w and u, in Figure 3a. Good agreement is noted in 
Figure 3a between measurements and the similarity relation- 
ship cr w = 1.25u,, confirming the suitability of this relation- 
ship for a wide range of surface conditions. 

The integral timescale was assumed to be constant with height 
as in the work by Raupach [1988] and identical to the value above 
the canopy. The value above the canopy was determined by 

= t3r[ ave) 

/•= 

(23) 

where a • 1 and T•r is the Eulerian integral timescale deter- 
mined from 

TE = pE(s) ds 

(w(t + s)w(t)) 
2 

O' w 

(24) 

where p•r(s) is the Eulerian vertical velocity autocorrelation 
function. In practice, the above integration was carried out up 
to the first zero crossing (see Appendix C). The value of a was 
assumed to be height-independent. The average Eulerian in- 
tegral timescale was determined from the vertical velocity time 
series measurements by averaging the measured T•r at 9, 13, 
and 14 m. In order to compare with Raupach [1988], we com- 
puted the dimensionless timescale T* = (u, TL)/h for all the 
runs in Figure 3b. The horizontal dashed line is the mean value 
of the data of Raupach [1988]. The agreement is within the 
scatter displayed by Raupach [1988]. 

4.2. Predictions of CO2 Sources and Fluxes Using LNF 

In order to predict CO2 scalar sources and fluxes using LNF, 
two sets of inputs are required: (1) the mean CO2 concentra- 
tion profile within and above the canopy; and (2) the profiles of 
cr w and Tz•. A vertical grid with dz = 0.25 m was first con- 
structed, resulting in 80 nodes. A fine-resolution grid (0.25 m) 
was necessary since the flux was computed by integrating the 
source profile as in (13). The 80 nodes were a good compro- 
mise between a fine grid size and the potential instabilities 
resulting from the Gauss-Jordan elimination method for in- 
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Figure 3b. The diurnal variation of the dimensionless can- 
opy timescale T* = u, (13 T•r)/h; 13 = a (U)/cr w, and a = 1, 
h = 13 m. The horizontal dashed line is the mean value of T* 

from a wide range of experiments reported by Raupach [1988]. 
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verting matrices [see Press et al., 1992, pp. 22-34]. The mean 
CO2 concentration profiles at these nodes were determined 
from linear interpolation between the six measurement levels 
shown in Figure 3c. Notice in Figure 3c that the highest CO2 
concentration values occur close to the ground surface except 
between hours 13 and 14. We note that interpolating between 
concentration measurements departs from the suggestions by 
Raupach [1989a], who assumed that the source profile was 
constant across dz, where dz is determined from the measure- 
ment grid. In Appendix D, we further explore the conse- 
quences of assuming a continuous concentration profile vis h 
vis Raupach's discontinuous source profile. 

The dispersion matrix D ii with i = 1,-.., 80 and j -- 
1, ..-, 52 was constructed using (16) by placing a unit source 
strength atj -- 1, --., 52 and using the forward LNF defined 
by (13), (14), and (15). The ground was assumed to be a source 
of CO2, and thus the concentration at the groand level was 
assumed to be the same as the value at z = 1.0 m. Once D ii 
is calculated for each 20 min time step, the source profile is 
computed from (17) and the flux profile is computed from (13). 
As an illustration, Figure 3d shows the 20 min mean variation 
of C, tr w, and T L with height (start time, 1140). The LNF 
model was used to predict the source and flux profiles S(z) 
and F(z). For reference purposes, the LAI profile is also 
shown. Notice the close correspondence between the LAI and 
the S profile. Clearly, the near-field contribution to the C 
profile must be responsible for such a close relation between 
the LAI and S. Also, it is interesting to note in Figure 3d that 
LNF predictions did reproduce (1) the countergradient trans- 
port at z = 8 m, (2) the fact that the near-ground air is a CO2 
source, and (3) the fact that the maximum CO2 source is at the 
canopy-atmosphere interface and that the point of maximum 
LAI is the point of maximum CO2 sink. 

4.3. Comparisons Between LNF Flux Predictions and Eddy 
Correlation Measurements 

A comparison between measured and predicted CO2 fluxes 
is shown in Figure 4. A linear regression model of the form 
F(c ec) -- AFc + B was used to assess the model performance. 
Here, Fc (ec) is the eddy correlation measured flux, and Fc is the 
LNF predicted flux. The coefficient of determination (r 2 = 
0.58) and the standard error of estimate (SEE = 0.16 mg kg -• 

m s-1) suggest that the modeled and measured CO2 fluxes at 
z = 9 m are in good agreement. 

4.4. Error Analysis 

As was noted in the theory section, two key assumptions 
must be satisfied in the LNF formulation: (1) the canopy flow 
is purely dispersive with no advective transport, and (2) the 
distribution of the vertical velocity is near-Gaussian. In order 
to check how significant these simplifications are on the LNF 
estimated flux, an error analysis was carried out. For that 
purpose, the error in the 20 min CO2 fluxes at 9 m (eF) was 
computed by 

•F = F• LNF) -- F• ec) (25) 

where F? NF) and F? ) are the LNF predicted and eddy cor- 
relation measured CO2 fluxes. In order to evaluate the influ- 
ence of the above two assumptions on the LNF flux predic- 
tions, we consider the following relations: (1) If the advective 
transport significantly affects the LNF flux predictions, then ev 
and the mean longitudinal velocity (U) at the canopy top must 
be strongly correlated. (2) If the near-Gaussian approximation 
significantly affects the LNF flux predictions, then e v and the 
vertical velocity skewness and flatness factors at 9 m must be 
strongly correlated. 

These two points are considered in Figures 5a, 5b, and 5c. In 
Figure 5a, ev as a function of (U) is shown along with the 
regression line. No significant trend at the 95% confidence 
limits was observed, suggesting that the errors in neglecting 
advective transport are not very significant for this experiment. 
However, Figure 5b does suggest that the skewness has some 
marginal effects on the LNF estimated CO2 flux. The regres- 
sion slope was statistically significantly different from zero at 
the 95% confidence interval. As the measured skewness ap- 
proaches zero (Gaussian), ev marginally diminishes (though 
interestingly the trend is opposite to that in Figure 5a). We 
note that for strictly homogeneous turbulence, the velocity 
field is Gaussian [Batchelor, 1953, pp. 169-174]. In Figure 5c, 
e v varied mildly with the flatness factor. Recall that for a 
Gaussian distribution, the flatness factor is 3. These two find- 
ings are consistent with the findings from a random flight 
numerical experiment carried out by Raupach [1988] using 
Sawford's [1986] model. 

Finally, the sensitivity of LNF to the choice of a was tested. 
Recall in (24) that a was assumed to be unity. However, the 
value of a is not well defined and has been the subject of 
theoretical and experimental treatments for the past 30 years. 
Tennekes and Lumley [1972, p. 277] proposed an a = 4/3 based 
on the relationship between the Lagrangian and Eulerian ve- 
locity spectra in the inertial subrange; Snyder and Lumley 
[1971] found that a = 1 from direct measurements of the 
Eulerian and Lagrangian integral timescales; while the balloon 
data of Angell [1974] and Pasquill and Smith [1983, p. 87] 
suggest an a that can vary from 1 to 2. For that purpose, a was 
varied from 1 to 2 in increments of 0.2. For each a value, the 
root-mean-square error (e2v) was computed for the whole day 
by averaging the squared error for all 30 measurements. The 
variation of (•3) •/2 as a function of a is shown in Figure 5d. 
Notice that the minimum error occurs at a = 1, and increases 
linearly with increasing a. Hence the recommended a for can- 
opy transport is unity, in agreement with Raupach's [1988] 
suggestions. 
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4.5. LNF, K Theory, and Near-Field Dispersion 

In order to demonstrate the importance of near-field effects, 
we compare the CO2 fluxes predicted from LNF with fluxes 
predicted using K(z) = Kf(z) = (rw(z)2Tz•(z) (analogous to 
K theory with K being defined by the far-field eddy diffusivity) 
and fluxes measured with the eddy correlation in Figure 6. 
That is, for K theory, the near-field contribution is set to zero 
(as suggested by Dolman and Wallace [1991], McNaughton and 
Van den Hurk [1995], and Van den Hurk and McNaughton 
[1995]). It is evident that LNF predictions are much more 
consistent with the eddy correlation measurements when com- 
pared with K theory. This is very analogous to the arguments 
and measurements presented by Thurtell [1989]. In the study by 
Thurtell [1989], a small box containing two gases which are 
diffusing in opposite directions is used; the concentration pro- 
file for one of the gases is measured. It was concluded by the 
author that near the source, K theory cannot reproduce the 
measured flux, while away from the source (3 to 4 diffusion 
length scales), K theory accurately predicts the fluxes. We also 
compared the mean daily CO2 fluxes measured by the eddy 
correlation (-0.27 mg kg -• m s -•) and predicted by LNF 
(-0.30 mg kg-• m s-•) and K theory (-0.43 mg kg-• m s-•). 
It appears that at such a time step, the LNF is also in better 

agreement with the eddy correlation when compared to K 
theory, though further testing is required. 

5. Conclusions 

This study has focused on the relationship between the CO2 
concentration, source, and flux profiles in a homogeneous 
loblolly pine stand using a Lagrangian dispersion model orig- 
inally developed by Raupach [1989a, b]. The model inputs 
included estimates of the Lagrangian integral timescale profile, 
Lagrangian vertical velocity variance profile, and the mean 
CO2 concentration profile. The Lagrangian integral timescale 
was estimated from measured Eulerian integral timescales 
within and above the canopy, and the Lagrangian vertical ve- 
locity variance was assumed identical to the Eulerian value [see 
Corrsin, 1959]. From these inputs, the source (or sink) profile 
was computed, and the flux profile inside the canopy was es- 
timated by numerical integration of the source (or sink) pro- 
file. The CO2 flux predictions from this model were compared 
to direct eddy correlation measurements available at z/h = 
0.75. Our study demonstrated the following: 

1. The localized near-field (LNF) theory proposed by Rau- 
pach [1983, 1988, 1989a, b] is an operational method for de- 
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Figure 6. Diurnal variation of eddy correlation measured 
CO2 flux, and predicted CO2 fluxes from LNF and K theory. 

scribing sources and fluxes of CO 2 within forested systems if 
adequate information about the velocity statistics is available. 

2. The LNF theory simulated the diurnal variation of the 
eddy correlation measured CO2 fluxes better than K theory, 
suggesting that near-field corrections might be important for 
canopy transport and forest biosphere-atmosphere interac- 
tions. This result appears to be at variance with the conclusions 
of Van den Hurk and McNaughton [1995], McNaughton and 
Van den Hurk [1995], and Dolman and Wallace [1991]. This 
apparent difference may be attributed to the fact that (1) these 
authors utilized the equivalent of the "forward" LNF approach 
while our study considered the "inverse" LNF approach, and 
(2) the comparisons between measured and predicted CO2 
fluxes are within rather than above the canopy. In the forward 
approach, the near-field concentration corrections are minor, 
and the flux calculation becomes independent from the disper- 
sion model as in (13). However, in the "inverse" LNF ap- 
proach, the near-field contribution to the gradient is large [e.g., 
Van den Hurk and McNaughton, 1995, Figure 3]. 

3. The disparity between predictions based on LNF and 
eddy correlation measurements decreases as the averaging 
time period increases. The cumulative fluxes predicted by LNF 
and measured by eddy correlation are very similar. 

4. The absence of the advective transport in LNF is rea- 
sonable for within-canopy flux calculations. 

5. The departures from non-Gaussian distribution in the 
vertical velocity marginally influence the LNF model perfor- 
mance. Our study suggests that departures from Gaussian dis- 
tribution in the odd moments (e.g., skewness) are more im- 
portant for LNF CO2 flux estimation than departures in the 
even moments (flatness factor). 

Appendix A: LICOR 6262 Lag Time Corrections 
Due to the tubing length between the CO2 intake and the 

gas analyzer, the CO2 concentration measurements lag the 
one-dimensional sonic anemometer vertical velocity measure- 
ments. In order to minimize the influence of this lag and 
determine its value, the following was carried out: 

1. The LICOR 6262 gas analyzer was placed at the top of 
the tower (12 m vertical distance) away from the CO2 intake. 
This minimizes the tubing length between the air intake and 
the LICOR 6262 gas analyzer. The airflow rates to the LICOR 
6262 were 9-10 L min -•. 

2. A Campbell Scientific Krypton hygrometer was colo- 
cated with the LICOR 6262 gas analyzer. The water vapor time 
series measurements (sampling rate, 10 Hz) from both instru- 
ments were compared every 20 min (N = 12,000 points). 

The lag time between the LICOR 6262 gas analyzer and the 
Krypton hygrometer was determined from the cross-correla- 
tion CC(s) function between the LICOR 6262 gas analyzer 
(qaa) and the Krypton hygrometer measurement (qkh) using 

(qaa(t)qkh(t + S)) 
CC(s) = (26) 

tT #a tT kh 

where s is the time lag. The value of s at which CC(s) is 
maximum (S opt) determines the optimal lag to be applied to 
the CO2 concentration time series in the eddy correlation CO2 
flux measurements. Figure 7a shows the time evolution of the 
optimal lag (s opt) during the day for every 20 min, as well as the 
value of CC(sopt) at that time lag. Notice that CC(sopt) ex- 
ceeded 0.93 for most conditions. The small differences can be 

attributed to (1) the smearing of high-frequency fluctuations 
within the tube and (2) the marginal differences in air volumes 
being sampled since the Krypton was 20 cm away from the gas 
analyzer air intake. 

Appendix B: Adequacy of the Profile Sampling 
Duration 

One main difficulty in measuring the mean vertical CO2 
concentration profiles is the need to resolve very small differ- 
ences in mean concentration measurements within the canopy. 
One possible method to achieve this goal is to place many 
LICOR 6252 gas analyzers (one analyzer per measurement 
level) calibrated prior to the experiment. Both economy and 
the unavoidable instrumentation drifts preclude that option. 
Alternatively, one may sample the CO2 concentration sequen- 
tially with the same gas analyzer at many levels, and repeat this 
process several times over a sampling period that is short 
enough to insure stationarity in the mean meteorological con- 
ditions. While this profile-sampling method is economical, 
eliminates the instrument drift problem, and does not require 
the high instrument precision needed in the first alternative, it 
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Figure 7a. Correction for LICOR 6262 lag time using a 
Krypton hygrometer. The optimal lag time resulting in maxi- 
mum cross correlation is presented. The maximum cross- 
correlation value between the two water vapor measurements 
is also shown. 
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introduces other uncertainties such as the adequate sampling 
time to obtain a representative mean concentration at each 
level. In order to evaluate this inadequacy in the profile mea- 
surements, a comparison with the 10 Hz LICOR 6262 at 9 m 
was carried out. 

During this experiment the profile-sampling system mea- 
sured the mean CO2 concentration at 9 m throughout the day, 
and we compared these readings to the LICOR 6262 mean 
concentration measurement (12,000 points) every 20 min. This 
comparison is shown in Figure 7b. We note that the two air 
ports are separated by about 2 m. Notice that the profile- 
measured concentrations are smoother, indicating some loss in 
the mean concentration value. 

Appendix C: Eulerian Integral Timescales via 
Zero Crossings 

Lenschow et al. [1994] found that earlier integral timescale 
estimates by Lenschow and Stankov [1986] may have been 
overestimated due to the use of the zero-crossing method. 
They proposed an alternate method which fits an exponential 
autocorrelation to the measured autocorrelation using regres- 
sion analysis (they used the Fourier domain instead of the time 
domain). Using the "best fit" exponential autocorrelation func- 
tion, the integral timescale can be computed analytically with- 
out the need of numerical integration or zero-crossing deter- 
mination. The reported difference between the two 
calculations was a factor of 4 for temperature fluctuations. In 
this appendix we further explore the zero-crossing method in 
relation to the method of Lenschow et al. [1994]. For illustra- 
tion purposes we computed the autocorrelation function for 
the vertical velocity time series for a run collected at 0930. The 
measured autocorrelation function is shown in Figure 8a. The 
exponential autocorrelation function fit is also shown (dashed 
line). The integral timescale computed by a trapezoidal inte- 
gration up to the first zero crossing is 1.5 s, while the integral 
timescale computed from an analytic integration of the fitted 
exponential function is 2.0 s. Hence the Lenschow et al. [1994] 
method and the zero-crossing method differ by 25%, which is 
much smaller than the difference reported by Lenschow et al. 
[1994]. Also, in Figure 8b we show that the method of Len- 
schow et al. [1994] will systematically yield integral timescale 
values larger than the zero-crossing method due to the unit 
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Figure 7b. Comparison between the profile measured CO2 
concentration (LICOR 6252) and the eddy correlation mea- 
sured CO2 concentration (LICOR 6262). 
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Figure 8. Comparisons between measured (solid) and esti- 
mated (dashed) autocorrelation functions shown on (a) a real 
time lag axis and (b) a log time axis. The estimation was carried 
out using the method of Lenschow et al. [1994]. 

slope at lag 0 (a logarithmic axis is chosen to amplify the 
differences at small time lags). We should note that Lenschow 
et al.'s [1994] revised integral timescale values were smaller 
than the values computed by the zero-crossing method in the 
work by Lenschow and Stankov [1986]. This clearly suggests 
that the discrepancy could not have been attributed to the zero 
crossing. Also, note that Lenschow and Stankov [1986] used the 
raw temperature time series, while Lenschow et al. [1994] used 
filtered time series. The temperature time series filtering can 
remove undesirable trends and low-frequency fluctuations that 
significantly reduce the decay of the autocorrelation function. 
Hence the discrepancy in the integral timescale estimates by 
Lenschow and Stankov [1986] and Lenschow et al. [1994] is 
likely due to the filtering scheme. We decided to use the 
zero-crossing method since the decay of the measured auto- 
correlation function is finite at finite lags in contrast to the 
exponential model [also Lumley and Panofsy, 1964, pp. 36-37]. 

Appendix D: Comments on Computation Grid 
Nodes and Concentration Measurements 

It was suggested by Raupach [1989a] that dz be chosen such 
that its magnitude centers vertical concentration measure- 
ments. In effect, Raupach's [1989a] approach fragments the 
canopy into layers with variable thickness dz and assumes that 
the mean concentration along dz is constant, identical to the 
measured value. The resultant source profile from such an 
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Figure 9a. The influence of dz on the LNF computed source 
profile for the turbulence measurements in Figure 3d. 

assumption is generally discontinuous. In this study we de- 
parted from Raupach's suggestions and assumed that the con- 
centration profile is continuous. Hence dz was chosen small 
enough (relative to the canopy height) to simulate a continu- 
ous concentration profile but not so small as to result in a large 
number of simultaneous equations whose solution is suscepti- 
ble to numerical instabilities. Furthermore, dz should not be 
chosen smaller than the Kolmogorov microscale (-1 mm). 
Hence with this near-continuous concentration profile, the re- 
sultant source profile will also be continuous. A key advantage 
to a near-continuous source profile is in the computation of the 
flux profile by numerically integrating S(z) with respect to z. 

We have repeated the source and flux profile calculations for 
all runs using dz = 0.1, 0.25, 0.5, 1.5, and 3.0 m in order to 
assess the effects of discretization on the computed fluxes at 
z -- 9 m. These dz values were chosen such that the computed 
and measured CO2 flux nodes at z = 9 rn coincide. Also, the 
last dz (3 m) roughly coincides with Raupach's suggestions. 

As an illustration the computed source and flux profiles for 
the run in Figure 3d are reproduced in Figures 9a and 9b for 
dz - 0.25, 0.5, 1.5, and 3 m. For dz - 0.1 m, the resultant 
source and flux profiles were identical to those obtained with 
dz = 0.25 m and are not shown for clarity purposes. While the 
same qualitative features are evident in all source profile cal- 
culations (Figure 9a), the flux profiles are very different (Fig- 
ure 9b). Since the computed flux at z = 9 m using Raupach's 
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Figure 9b. Same as Figure 9a, but for the flux profile. The 
eddy correlation measured flux is also shown. 

Table 1. Influence of dz on the Comparison Between 
Predicted and Measured CO2 Flux at z - 9 m for All Runs 

dz, m Slope A Intercept B r 2 SEE 

0.10 0.981 -0.0431 0.57 0.16 

0.25 0.978 -0.0533 0.58 0.16 
0.50 0.840 -0.103 0.52 0.16 

3.00 0.794 0.330 0.43 0.18 

The regression model is F c = A Fc (ec) + B. The standard error of 
estimate (SEE) and the coefficient of determination (r 2) are also 
shown. 

method differs by a factor of 2 from the eddy correlation value 
for this run, we decided to recompute and summarize the 
comparison between predicted and measured fluxes at z = 9 m 
for all runs in Table 1 using dz - 0.1, 0.25, 0.5, and 3.0 m, 
respectively. Notice that for dz = 0.1, 0.25, and 0.5 the 
regression statistics are very comparable and superior to the 
results obtained with dz - 3.0 m. Based on these results, the 
proposed approach may be more adequate than a discontinu- 
ous source profile. 
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