620 research outputs found

    Development of IPv6

    Full text link
    Recent advances in collaborative theory and interactive archetypes cooperate in or- der to realize the lookaside buffer. Given the current status of cacheable epistemologies, researchers shockingly desire the understanding of redundancy. We introduce a novel application for the deployment of access points (SheldInditer), showing that the seminal psychoacoustic algorithm for the unproven unification of 64 bit architectures and symmetric encryption is recursively enumerable. Of course, this is not always the case

    Building a QC Database of Meteorological Data from NASA KSC and the United States Air Force's Eastern Range

    Get PDF
    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) provides atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large datasets consists of ensuring erroneous data are removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, development methodologies, and periods of record. The goal of this activity is to use the previous efforts to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, It is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses

    Tolerance analysis for efficient MMI devices in silicon photonics

    Get PDF
    The proceeding at: IX Conference Silicon Photonics, took place at 2014, March, 8 in S. Francisco (USA).Silicon is considered a promising platform for photonic integrated circuits as they can be fabricated in state-of-the-art electronics foundaries with integrated CMOS electronics. While much of the existing work on CMOS photonics has used directional couplers for power splitting, multimode interference (MMI) devices may have relaxed fabrication requirements and smaller footprints, potentially energy efficient designs. They have already been used as 1x2 splitters, 2x1 combiners in Quadrature Phase Shift Keying modulators, and 3-dB couplers among others. In this work, 3-dB, butterfly and cross MMI couplers are realized on bulk CMOS technology. Footprints from around 40um2 to 200 um2 are obtained. MMI tolerances to manufacturing process and bandwidth are analyzed and tested showing the robustness of the MMI devices.This work has been sponsored by the Spanish institutions Ministerio de EconomĂ­a y Competitividad under project TEC2012-37983-C03-02, and grant EEBB-1-13-07511, Ministerio de EducaciĂłn under grant PRX12/00007 and FundaciĂłn Caja Madrid.Publicad

    Waveguide-coupled detector in zero-change complementary metal–oxide–semiconductor

    Get PDF
    We report a waveguide-coupled photodetector realized in a standard CMOS foundry without requiring changes to the process flow (zero-change CMOS). The photodetector exploits carrier generation in the silicon-germanium normally utilized as stressor in pFETs. The measured responsivity and 3 dB bandwidth are of 0.023 A/W at a wavelength of 1180 nm and 32 GHz at −1 V bias (18 GHz at 0 V bias). The dark current is less than 10 pA and the dynamic range is larger than 60 dB.United States. Defense Advanced Research Projects Agency. Photonically Optimized Embedded Microprocessors Program (Award HR0011-11-C-0100)United States. Defense Advanced Research Projects Agency. Photonically Optimized Embedded Microprocessors Program (Contract HR0011-11-9-0009

    Screening of DUB activity and specificity by MALDI-TOF mass spectrometry

    Get PDF
    Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs

    Microbial activity in the marine deep biosphere: progress and prospects

    Get PDF
    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth\u27s global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org)
    • 

    corecore