615 research outputs found
Negative Temperature States in the Discrete Nonlinear Schroedinger Equation
We explore the statistical behavior of the discrete nonlinear Schroedinger
equation. We find a parameter region where the system evolves towards a state
characterized by a finite density of breathers and a negative temperature. Such
a state is metastable but the convergence to equilibrium occurs on astronomical
time scales and becomes increasingly slower as a result of a coarsening
processes. Stationary negative-temperature states can be experimentally
generated via boundary dissipation or from free expansions of wave packets
initially at positive temperature equilibrium.Comment: 4 pages, 5 figure
Mode hopping strongly affects observability of dynamical instability in optical parametric oscillators
Theoretical investigations of dynamical behavior in optical parametric
oscillators (OPO) have generally assumed that the cavity detunings of the
interacting fields are controllable parameters. However, OPOs are known to
experience mode hops, where the system jumps to the mode of lowest cavity
detuning. We note that this phenomenon significantly limits the range of
accessible detunings and thus may prevent instabilities predicted to occur
above a minimum detuning from being evidenced experimentally. As a simple
example among a number of instability mechanisms possibly affected by this
limitation, we discuss the Hopf bifurcation leading to periodic behavior in the
monomode mean-field model of a triply resonant OPO and show that it probably
can be observed only in very specific setups.Comment: submitted to Phys. Rev.
Inhibited Al diffusion and growth roughening on Ga-coated Al (100)
Ab initio calculations indicate that the ground state for Ga adsorption on Al
(100) is on-surface with local unit coverage. On Ga-coated Al (100), the bridge
diffusion barrier for Al is large, but the AlGa {\it exchange
barrier is zero}: the ensuing incorporation of randomly deposited Al's into the
Ga overlayer realizes a percolation network, efficiently recoated by Ga atoms.
Based on calculated energetics, we predict rough surface growth at all
temperatures; modeling the growth by a random deposition model with partial
relaxation, we find a power-law divergent roughness .Comment: 4 pages RevTeX-twocolumn, no figures. to appear in Phys. Rev. Lett.,
July 199
Optical pattern formation with a 2-level nonlinearity
We present an experimental and theoretical investigation of spontaneous
pattern formation in the transverse section of a single retro-reflected laser
beam passing through a cloud of cold Rubidium atoms. In contrast to previously
investigated systems, the nonlinearity at work here is that of a 2-level atom,
which realizes the paradigmatic situation considered in many theoretical
studies of optical pattern formation. In particular, we are able to observe the
disappearance of the patterns at high intensity due to the intrinsic saturable
character of 2-level atomic transitions.Comment: 5 pages, 4 figure
Active faulting controls bedform development on a deep-water fan
Tectonically controlled topography influences deep-water sedimentary systems. Using 3-D seismic reflection data from the Levant Basin, eastern Mediterranean Sea, we investigate the spatial and temporal evolution of bedforms on a deep-water fan cut by an active normal fault. In the footwall, the fan comprises cyclic steps and antidunes along its axial and external portions, respectively, which we interpret to result from the spatial variation in flow velocity due to the loss of confinement at the canyon mouth. Conversely, in the hanging wall, the seafloor is nearly featureless at seismic scale. Numerical modeling of turbidity currents shows that the fault triggers a hydraulic jump that suppresses the flow velocity downstream, which thus explains the lack of visible bedforms basinward. This study shows that the topography generated by active normal faulting controls the downslope evolution of turbidity currents and the associated bedforms and that seafloor geomorphology can be used to evince syn-tectonic deposition
Polarisation Patterns and Vectorial Defects in Type II Optical Parametric Oscillators
Previous studies of lasers and nonlinear resonators have revealed that the
polarisation degree of freedom allows for the formation of polarisation
patterns and novel localized structures, such as vectorial defects. Type II
optical parametric oscillators are characterised by the fact that the
down-converted beams are emitted in orthogonal polarisations. In this paper we
show the results of the study of pattern and defect formation and dynamics in a
Type II degenerate optical parametric oscillator for which the pump field is
not resonated in the cavity. We find that traveling waves are the predominant
solutions and that the defects are vectorial dislocations which appear at the
boundaries of the regions where traveling waves of different phase or
wave-vector orientation are formed. A dislocation is defined by two topological
charges, one associated with the phase and another with the wave-vector
orientation. We also show how to stabilize a single defect in a realistic
experimental situation. The effects of phase mismatch of nonlinear interaction
are finally considered.Comment: 38 pages, including 15 figures, LATeX. Related material, including
movies, can be obtained from
http://www.imedea.uib.es/Nonlinear/research_topics/OPO
Polarization coupling and pattern selection in a type-II optical parametric oscillator
We study the role of a direct intracavity polarization coupling in the
dynamics of transverse pattern formation in type-II optical parametric
oscillators. Transverse intensity patterns are predicted from a stability
analysis, numerically observed, and described in terms of amplitude equations.
Standing wave intensity patterns for the two polarization components of the
field arise from the nonlinear competition between two concentric rings of
unstable modes in the far field. Close to threshold a wavelength is selected
leading to standing waves with the same wavelength for the two polarization
components. Far from threshold the competition stabilizes patterns in which two
different wavelengths coexist.Comment: 14 figure
All-optical delay line using semiconductor cavity solitons (vol 92, 011101, 2008)
Correction of Pedaci, F. and Barland, S. and Caboche, E. and Firth, W.J. and Oppo, G.L. and Tredicce, J.R. and Ackemann, T. and Scroggie, A.J. (2008) All-optical delay line using semiconductor cavity solitons. Applied Physics Letters, 92 (1). ISSN 0003-695
Quantum structures in nonlinear optics and atomic physics : a background overview
A brief overview of quantum effects in spatial structures such as nonlinear optical patterns, chains of trapped ions and atoms in optical lattices is presented. Some of the main results of the contributions to this Focus Issue are also briefly described
- …