2,854 research outputs found

    On the Limitations of the Theory of the Positron

    Get PDF
    In a recent paper Dirac has suggested a further development of his theory of the positron. Dirac here considers the operators corresponding to charge and current density for a system of electrons in which nearly all the negative energy states are full, and shows that in the presence of an arbitrary external electromagnetic field these operators may be divided into two terms: one of these is infinite, and depends on the field but not on the state of the electrons; the other is finite and determinate, and depends on the field and on the electron state. Dirac makes the suggestion that these second terms be regarded as giving the charge and current density of the electron-positron distribution (epd): i.e., that the formalism of his theory of the electron be modified by the subtraction from the operators for charge and current density of the infinite and field-dependent terms. This modification leaves unaltered the Lorentz and gauge invariance of the theory and the validity of the conservation law for charge and current. Because, however, the way in which the operators are to be modified depends upon the value of the electromagnetic field, the method is not readily extended to take account of the field produced by the epd; on the other hand, it gives for the charge and current induced in the epd by an external field finite and definite results, and thus constitutes in this respect a true theoretical advance

    A cortical potential reflecting cardiac function

    Get PDF
    Emotional trauma and psychological stress can precipitate cardiac arrhythmia and sudden death through arrhythmogenic effects of efferent sympathetic drive. Patients with preexisting heart disease are particularly at risk. Moreover, generation of proarrhythmic activity patterns within cerebral autonomic centers may be amplified by afferent feedback from a dysfunctional myocardium. An electrocortical potential reflecting afferent cardiac information has been described, reflecting individual differences in interoceptive sensitivity (awareness of one's own heartbeats). To inform our understanding of mechanisms underlying arrhythmogenesis, we extended this approach, identifying electrocortical potentials corresponding to the cortical expression of afferent information about the integrity of myocardial function during stress. We measured changes in cardiac response simultaneously with electroencephalography in patients with established ventricular dysfunction. Experimentally induced mental stress enhanced cardiovascular indices of sympathetic activity (systolic blood pressure, heart rate, ventricular ejection fraction, and skin conductance) across all patients. However, the functional response of the myocardium varied; some patients increased, whereas others decreased, cardiac output during stress. Across patients, heartbeat-evoked potential amplitude at left temporal and lateral frontal electrode locations correlated with stress-induced changes in cardiac output, consistent with an afferent cortical representation of myocardial function during stress. Moreover, the amplitude of the heartbeat-evoked potential in the left temporal region reflected the proarrhythmic status of the heart (inhomogeneity of left ventricular repolarization). These observations delineate a cortical representation of cardiac function predictive of proarrhythmic abnormalities in cardiac repolarization. Our findings highlight the dynamic interaction of heart and brain in stress-induced cardiovascular morbidity

    Black hole formation in perfect fluid collapse

    Full text link
    We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust collapse solution in order to include non-zero pressures and inhomogeneities into evolution. It is shown that a black hole is necessarily generated as end product of continued gravitational collapse, rather than a naked singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is shown that no non-spacelike trajectories can escape from the central singularity. Our results provide some insights into how the dynamical collapse works, and into the possible formulations of the cosmic censorship hypothesis, which is as yet a major unsolved problem in black hole physics.Comment: Revtex4, To appear in Physical Review

    On the Role of Initial Data in the Gravitational Collapse of Inhomogeneous Dust

    Full text link
    We consider here the gravitational collapse of a spherically symmetric inhomogeneous dust cloud described by the Tolman-Bondi models. By studying a general class of these models, we find that the end state of the collapse is either a black hole or a naked singularity, depending on the parameters of the initial density distribution, which are ρc\rho_{c}, the initial central density of the massive body, and R0R_0, the initial boundary. The collapse ends in a black hole if the dimensionless quantity ÎČ\beta constructed out of this initial data is greater than 0.0113, and it ends in a naked singularity if ÎČ\beta is less than this number. A simple interpretation of this result can be given in terms of the strength of the gravitational potential at the starting epoch of the collapse.Comment: Original title changed, numerical range of naked singularity corrected. Plain Tex File. 14 pages. To appear in Physical Review

    The Spectrum of the Brown Dwarf Gliese 229B

    Get PDF
    We present a spectrum of the cool (T_eff = 900 K) brown dwarf Gliese 229B. This spectrum, with a relatively high signal-to-noise ratio per spectral resolution element (> 30), spans the wavelength range from 0.837 microns to 5.0 microns. We identify a total of four different major methane absorption features, including the fundamental band at 3.3 microns, at least four steam bands, and two neutral cesium features. We confirm the recent detection of carbon monoxide (CO) in excess of what is predicted by thermochemical equilibrium calculations. Carbon is primarily involved in a chemical balance between methane and CO at the temperatures and pressures present in the outer parts of a brown dwarf. At lower temperatures, the balance favors methane, while in the deeper, hotter regions, the reaction reverses to convert methane into CO. The presence of CO in the observable part of the atmosphere is therefore a sensitive indicator of vertical flows. The high signal-to-noise ratio in the 1 to 2.5 microns region permits us to place constraints on the quantity of dust in the atmosphere of the brown dwarf. We are unable to reconcile the observed spectrum with synthetic spectra that include the presences of dust. The presence of CO but lack of dust may be a clue to the location of the boundaries of the outer convective region of the atmosphere: The lack of dust may mean that it is not being conveyed into the photosphere by convection, or that it exists in patchy clouds. If the dust is not in clouds, but rather sits below the outer convective region, we estimate that the boundary between outer convective and inner radiative layers is between 1250 K and 1600 K, in agreement with recent models.Comment: 15 pages, 8 figure

    Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test

    Get PDF
    We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').Comment: 4 postscript figures. Submitted to Phys. Rev. D15 as a Brief Repor

    Metal Enrichment in the Reionization Epoch

    Full text link
    The presence of elements heavier than helium ("metals") is of fundamental importance for a large number of astrophysical processes occurring in planet, star and galaxy formation; it also affects cosmic structure formation and evolution in several ways. Even a small amount of heavy elements can dramatically alter the chemistry of the gas, opening the path to complex molecules. Metals might enhance the ability of the gas to radiate away its thermal energy, thus favoring the formation of gravitationally bound objects; they can also condensate in a solid phase (dust grains), partly or totally blocking radiation from luminous sources. Finally, they represent useful tracers of energy deposition by stars and probe the physical properties of the environment by absorption or emission lines. Last, but certainly not least, life -- as we know it on Earth -- is tightly related to the presence of at least some of the heavy elements. In this pedagogical review I will concentrate on the connection between early metal enrichment and cosmic reionization. As we will see these two processes are intimately connected and their joint study might turn out to be fundamental in understanding the overall evolution of the Universe during the first billion years after the Big Bang, an epoch corresponding to redshifts z>6.Comment: Book chapter in Understanding the Epoch of Cosmic Reionization: Challenges and Progress, Springer International Publishing, Ed. Andrei Mesinger, ISBN 978-3-319-21956-1. arXiv admin note: text overlap with arXiv:astro-ph/0007248 by other author

    Exploring high-end climate change scenarios for flood protection of the Netherlands

    Get PDF
    This international scientific assessment has been carried out at the request of the Dutch Delta Committee. The "Deltacommissie" requested that the assessment explore the high-end climate change scenarios for flood protection of the Netherlands. It is a state-of–the art scientific assessment of the upper bound values and longer term projections (for sea level rise up to 2200) of climate induced sea level rise, changing storm surge conditions and peak discharge of river Rhine. It comprises a review of recent studies, model projections and expert opinions of more than 20 leading climate scientists from different countries around the North Sea, Australia and the US

    Fe XIII coronal line emission in cool M dwarfs

    Full text link
    We report on a search for the Fe xiii forbidden coronal line at 3388.1 \AA in a sample of 15 M-type dwarf stars covering the whole spectral class as well as different levels of activity. A clear detection was achieved for LHS 2076 during a major flare and for CN Leo, where the line had been discovered before. For some other stars the situation is not quite clear. For CN Leo we investigated the timing behaviour of the Fe xiii line and report a high level of variability on a timescale of hours which we ascribe to microflare heating.Comment: 13 pages, 10 figure

    Physical nature of the central singularity in spherical collapse

    Full text link
    We examine here the nature of the central singularity forming in the spherically symmetric collapse of a dust cloud and it is shown that this is always a strong curvature singularity where gravitational tidal forces diverge powerfully. An important consequence is that the nature of the naked singularity forming in the dust collapse turns out to be stable against the perturbations in the initial data from which the collapse commences.Comment: Latex file, 11 pages, 2 figures, Updated version to match the published version in PR
    • 

    corecore