6 research outputs found

    GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation

    Get PDF
    During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation. The authors demonstrate the negative role of GOLVEN peptides during lateral root initiation in Arabidopsis, at the very early stage of the first asymmetric cell division of lateral root founder cells, and identify the receptors for these peptides

    Long-term in vivo imaging of luciferase-based reporter gene expression in Arabidopsis roots

    No full text
    Plants have an amazing capacity to adjust their growth to environmental limitations. This is particularly relevant for the root system that tunes its developmental pattern to mine the soil for water and nutrients while avoiding patches of soil that contain biotic and abiotic stress agents. Because most developmental processes are taking place gradually while roots are growing, it is often difficult to correlate gene expression events with specific developmental processes that are not necessarily coinciding in time and space. Therefore, in vivo detection and quantification of gene expression over a long period under gravitational conditions can be instrumental in dissecting complex processes in the root. Here, we describe a method for long-term imaging of luciferase dynamics in growing Arabidopsis roots that express a luciferase gene driven by the auxin-output reporter DR5, in the context of lateral root development

    Nature and nurture : genotype-dependent differential responses of root architecture to agar and soil environments

    No full text
    Root development is crucial for plant growth and therefore a key factor in plant performance and food production. Arabidopsis thaliana is the most commonly used system to study root system architecture (RSA). Growing plants on agar-based media has always been routine practice, but this approach poorly reflects the natural situation, which fact in recent years has led to a dramatic shift toward studying RSA in soil. Here, we directly compare RSA responses to agar-based medium (plates) and potting soil (rhizotrons) for a set of redundant loss-of-function plethora (plt) CRISPR mutants with variable degrees of secondary root defects. We demonstrate that plt3plt7 and plt3plt5plt7 plants, which produce only a handful of emerged secondary roots, can be distinguished from other genotypes based on both RSA shape and individual traits on plates and rhizotrons. However, in rhizotrons the secondary root density and the total contribution of the side root system to the RSA is increased in these two mutants, effectively rendering their phenotypes less distinct compared to WT. On the other hand, plt3, plt3plt5, and plt5plt7 mutants showed an opposite effect by having reduced secondary root density in rhizotrons. This leads us to believe that plate versus rhizotron responses are genotype dependent, and these differential responses were also observed in unrelated mutants short-root and scarecrow. Our study demonstrates that the type of growth system affects the RSA differently across genotypes, hence the optimal choice of growth conditions to analyze RSA phenotype is not predetermined

    Nature and nurture: Genotype-dependent differential responses of root architecture to agar and soil environments

    No full text
    Root development is crucial for plant growth and therefore a key factor in plant perfor-mance and food production. Arabidopsis thaliana is the most commonly used system to study root system architecture (RSA). Growing plants on agar-based media has always been routine practice, but this approach poorly reflects the natural situation, which fact in recent years has led to a dramatic shift toward studying RSA in soil. Here, we directly compare RSA responses to agar-based medium (plates) and potting soil (rhizotrons) for a set of redundant loss-of-function plethora (plt) CRISPR mutants with variable degrees of secondary root defects. We demonstrate that plt3plt7 and plt3plt5plt7 plants, which produce only a handful of emerged secondary roots, can be distinguished from other genotypes based on both RSA shape and individual traits on plates and rhizotrons. However, in rhizotrons the secondary root density and the total contribution of the side root system to the RSA is increased in these two mutants, effectively rendering their phenotypes less distinct compared to WT. On the other hand, plt3, plt3plt5, and plt5plt7 mutants showed an opposite effect by having reduced secondary root density in rhizotrons. This leads us to believe that plate versus rhizotron responses are genotype dependent, and these differential responses were also observed in unrelated mutants short-root and scarecrow. Our study demonstrates that the type of growth system affects the RSA differently across genotypes, hence the optimal choice of growth conditions to analyze RSA phenotype is not predetermined

    Genetic Variability of Arabidopsis thaliana Mature Root System Architecture and Genome-Wide Association Study

    No full text
    Root system architecture (RSA) has a direct influence on the efficiency of nutrient uptake and plant growth, but the genetics of RSA are often studied only at the seedling stage. To get an insight into the genetic blueprint of a more mature RSA, we exploited natural variation and performed a detailed in vitro study of 241 Arabidopsis thaliana accessions using large petri dishes. A comprehensive analysis of 17 RSA traits showed high variability among the different accessions, unveiling correlations between traits and conditions of the natural habitat of the plants. A sub-selection of these accessions was grown in water-limiting conditions in a rhizotron set-up, which revealed that especially the spatial distribution showed a high consistency between in vitro and ex vitro conditions, while in particular, a large root area in the lower zone favored drought tolerance. The collected RSA phenotype data were used to perform genome-wide association studies (GWAS), which stands out from the previous studies by its exhaustive measurements of RSA traits on more mature Arabidopsis accessions used for GWAS. As a result, we found not only several genes involved in the lateral root (LR) development or auxin signaling pathways to be associated with RSA traits but also new candidate genes that are potentially involved in the adaptation to the natural habitats

    Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis

    Get PDF
    The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil
    corecore