43 research outputs found

    C-reactive protein reference percentiles among pre-adolescent children in Europe based on the IDEFICS study population

    Get PDF
    OBJECTIVES: C-reactive protein (CRP) is involved in a wide range of diseases. It is a powerful marker for inflammatory processes used for diagnostic and monitoring purposes. We aimed to establish reference values as data on the distribution of serum CRP levels in young European children are scarce. SUBJECTS: Reference values of high-sensitivity CRP concentrations were calculated for 9855 children aged 2.0-10.9 years, stratified by age and sex. The children were recruited during the population-based European IDEFICS study (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS) with 18 745 participants recruited from 2007 to 2010. RESULTS: In 44.1 % of the children, CRP values were below or equal the detection limit of 0.2 mg/l. Median CRP concentrations showed a slight negative age trend in boys and girls, whereas serum CRP values were slightly higher in girls than in boys across all age groups. CONCLUSIONS: Our population-based reference values of CRP may guide paediatric practice as elevated values may require further investigation or treatment. Therefore, the presented reference values represent a basis for clinical evaluation and for future research on risk assessment of diseases associated with increased CRP levels among children

    Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants

    Get PDF
    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)-giving infants only breast-milk for the first 6 months of life-is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization's Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030.This work was primarily supported by grant no. OPP1132415 from the Bill & Melinda Gates Foundation. Co-authors used by the Bill & Melinda Gates Foundation (E.G.P. and R.R.3) provided feedback on initial maps and drafts of this manuscript. L.G.A. has received support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Código de Financiamento 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant nos. 404710/2018-2 and 310797/2019-5). O.O.Adetokunboh acknowledges the National Research Foundation, Department of Science and Innovation and South African Centre for Epidemiological Modelling and Analysis. M.Ausloos, A.Pana and C.H. are partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P4-ID-PCCF-2016-0084. P.C.B. would like to acknowledge the support of F. Alam and A. Hussain. T.W.B. was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. K.Deribe is supported by the Wellcome Trust (grant no. 201900/Z/16/Z) as part of his international intermediate fellowship. C.H. and A.Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P2-2.1-SOL-2020-2-0351. B.Hwang is partially supported by China Medical University (CMU109-MF-63), Taichung, Taiwan. M.Khan acknowledges Jatiya Kabi Kazi Nazrul Islam University for their support. A.M.K. acknowledges the other collaborators and the corresponding author. Y.K. was supported by the Research Management Centre, Xiamen University Malaysia (grant no. XMUMRF/2020-C6/ITM/0004). K.Krishan is supported by a DST PURSE grant and UGC Centre of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M.Kumar would like to acknowledge FIC/NIH K43 TW010716-03. I.L. is a member of the Sistema Nacional de Investigación (SNI), which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá. M.L. was supported by China Medical University, Taiwan (CMU109-N-22 and CMU109-MF-118). W.M. is currently a programme analyst in Population and Development at the United Nations Population Fund (UNFPA) Country Office in Peru, which does not necessarily endorses this study. D.E.N. acknowledges Cochrane South Africa, South African Medical Research Council. G.C.P. is supported by an NHMRC research fellowship. P.Rathi acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India. Ramu Rawat acknowledges the support of the GBD Secretariat for supporting the reviewing and collaboration of this paper. B.R. acknowledges support from Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal. A.Ribeiro was supported by National Funds through FCT, under the programme of ‘Stimulus of Scientific Employment—Individual Support’ within the contract no. info:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND/02386/2018/CP1538/CT0001/PT. S.Sajadi acknowledges colleagues at Global Burden of Diseases and Local Burden of Disease. A.M.S. acknowledges the support from the Egyptian Fulbright Mission Program. F.S. was supported by the Shenzhen Science and Technology Program (grant no. KQTD20190929172835662). A.Sheikh is supported by Health Data Research UK. B.K.S. acknowledges Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal for all the academic support. B.U. acknowledges support from Manipal Academy of Higher Education, Manipal. C.S.W. is supported by the South African Medical Research Council. Y.Z. was supported by Science and Technology Research Project of Hubei Provincial Department of Education (grant no. Q20201104) and Outstanding Young and Middle-aged Technology Innovation Team Project of Hubei Provincial Department of Education (grant no. T2020003). The funders of the study had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. All maps presented in this study are generated by the authors and no permissions are required to publish them

    Grouping Liabilityy and the Salomon Principle: Judiciall or Systemicc Abuse?

    No full text

    Skeletal muscle reflex-mediated changes in sympathetic nerve activity are abnormal in spontaneously hypertensive rats

    No full text
    In hypertension, the blood pressure response to exercise is exaggerated. We demonstrated previously that this heightened pressor response to physical activity is mediated by an overactive skeletal muscle exercise pressor reflex (EPR), with important contributions from its metaboreflex and mechanoreflex components. However, the mechanisms driving the abnormal blood pressure response to EPR activation are largely unknown. Recent evidence in humans suggests that the muscle metaboreflex partially mediates the enhanced EPR-induced pressor response via abnormally large changes in sympathetic nerve activity (SNA). Whether the muscle mechanoreflex induces similarly exaggerated alterations in SNA in hypertension remains unknown, as does the role of the mechanoreceptors mediating muscle reflex activity. To address these issues, the EPR was selectively activated by electrically inducing hindlimb muscle contraction in decerebrate normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Stimulation of the EPR evoked significantly larger increases in mean arterial pressure (MAP) and renal SNA (RSNA) in SHR compared with WKY (ΔRSNA from baseline: 140 ± 11 vs. 48 ± 8%). The mechanoreflex was stimulated by stretching hindlimb muscle which likewise elicited significantly greater elevations in MAP and RSNA in SHR than WKY (ΔRSNA from baseline: 105 ± 11 vs. 35 ± 7%). Blockade of mechanoreceptors in muscle with gadolinium significantly attenuated the MAP and RSNA responses to contraction and stretch in SHR. These data suggest that 1) the exaggerated pressor response to activation of the EPR and muscle mechanoreflex in hypertension is mediated by abnormally large reflex-induced augmentations in SNA and 2) this accentuated sympathetic responsiveness is evoked, in part, by stimulation of muscle mechanoreceptors
    corecore