22 research outputs found

    Merging graphic design and multimedia features in digital interactive eBook for tourism purposes

    Get PDF
    Tourism is becoming increasingly popular in many parts of the world. However, a visitor in a foreign country may feel anxious if information is display in a foreign travel guidebook. A phenomenon where tourist may face arbitrarily representation of an object by viewing the pictures and description has led to this paper entitle merging graphics design and multimedia features in digital interactive eBook for tourism purposes. The advantages of interactive eBook offered by computational technologies should widely be implemented instead of just adhere to paper book metaphor. This study aims to develop an eBook supported with active and interactive contents for tourism purposes

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Benchmarking single-cell RNA sequencing protocols for cell atlas projects

    No full text
    Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.This project has been made possible in part by grant no. 2018-182827 from the Chan Zuckerberg Initiative DAF, an advised fund of the Silicon Valley Community Foundation. H.H. is a Miguel Servet (CP14/00229) researcher funded by the Spanish Institute of Health Carlos III (ISCIII). C.M. is supported by an AECC postdoctoral fellowship. This work has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. H2020-MSCA-ITN-2015-675752 (Singek), and the Ministerio de Ciencia, Innovación y Universidades (SAF2017-89109-P; AEI/FEDER, UE). S. was supported by the German Research Foundation’s (DFG’s) (GR4980) Behrens-Weise-Foundation. C.Z. was supported by the European Molecular Biology Organization through the long-term fellowship ALTF 673-2017. The snRNA-seq data were generated with support from the National Institute of Allergy and Infectious Diseases (grant no. U24AI118672), I.N. was supported by JST CREST (grant no. JPMJCR16G3) , Japan. A.J., L.E.W., J.W.B. and W.E. were supported by funding from the DFG (EN 1093/2-1 and SFB1243 TP A14). This publication is part of a project (BCLLATLAS) that received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810287). Core funding was from the ISCIII and the Generalitat de Cataluny

    Catalytic Processes For Lignin Valorization into Fuels and Chemicals (Aromatics)

    No full text

    Enhancing power transfer capability through flexible AC transmission system devices: a review

    No full text

    Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo

    No full text
    We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a frequency band spanning from 10~Hz to 2~kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample sub-bands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and rr-mode amplitude. The best 95% confidence constraints placed on the signal strain are 7.7×10267.7\times 10^{-26} and 7.8×10267.8\times 10^{-26} near 200~Hz for the supernova remnants G39.2--0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and rr-mode amplitude reach 107\lesssim 10^{-7} and 105 \lesssim 10^{-5}, respectively, at frequencies above 400\sim 400~Hz for the closest supernova remnant G266.2--1.2/Vela Jr
    corecore