384 research outputs found

    Flexible control of the Peierls transition in metallic C60_{60} polymers

    Full text link
    The metal-semiconductor transition of peanut-shaped fullerene (C60_{60}) polymers is clarified by considering the electron-phonon coupling in the uneven structure of the polymers. We established a theory that accounts for the transition temperature TcT_c reported in a recent experiment and also suggests that TcT_c is considerably lowered by electron doping or prolonged irradiation during synthesis. The decrease in TcT_c is an appealing phenomenon with regard to realizing high-conductivity C60_{60}-based nanowires even at low temperatures.Comment: 3 pages, 3 figure

    Dugesia Japonica Is The Best Suited Of Three Planarian Species For High-Throughput Toxicology Screening

    Get PDF
    High-throughput screening (HTS) using new approach methods is revolutionizing toxicology. Asexual freshwater planarians are a promising invertebrate model for neurotoxicity HTS because their diverse behaviors can be used as quantitative readouts of neuronal function. Currently, three planarian species are commonly used in toxicology research: Dugesia japonica, Schmidtea mediterranea, and Girardia tigrina. However, only D. japonica has been demonstrated to be suitable for HTS. Here, we assess the two other species for HTS suitability by direct comparison with D. japonica. Through quantitative assessments of morphology and multiple behaviors, we assayed the effects of 4 common solvents (DMSO, ethanol, methanol, ethyl acetate) and a negative control (sorbitol) on neurodevelopment. Each chemical was screened blind at 5 concentrations at two time points over a twelve-day period. We obtained two main results: First, G. tigrina and S. mediterranea planarians showed significantly reduced movement compared to D. japonica under HTS conditions, due to decreased health over time and lack of movement under red lighting, respectively. This made it difficult to obtain meaningful readouts from these species. Second, we observed species differences in sensitivity to the solvents, suggesting that care must be taken when extrapolating chemical effects across planarian species. Overall, our data show that D. japonica is best suited for behavioral HTS given the limitations of the other species. Standardizing which planarian species is used in neurotoxicity screening will facilitate data comparisons across research groups and accelerate the application of this promising invertebrate system for first-tier chemical HTS, helping streamline toxicology testing

    Phonon dispersion and electron-phonon interaction in peanut-shaped fullerene polymers

    Full text link
    We reveal that the periodic radius modulation peculiar to one-dimensional (1D) peanut-shaped fullerene (C60_{60}) polymers exerts a strong influence on their low-frequency phonon states and their interactions with mobile electrons. The continuum approximation is employed to show the zone-folding of phonon dispersion curves, which leads to fast relaxation of a radial breathing mode in the 1D C60_{60} polymers. We also formulate the electron-phonon interaction along the deformation potential theory, demonstrating that only a few set of electron and phonon modes yields a significant magnitude of the interaction relevant to the low-temperature physics of the system. The latter finding gives an important implication for the possible Peierls instability of the C60_{60} polymers suggested in the earlier experiment.Comment: 9 pages, 8 figure

    Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System

    Full text link
    Rough surface effect on the Meissner diamagnetic current in the normal layer of proximity contact N-S bi-layer is investigated in the clean limit. The diamagnetic current and the screening length are calculated by use of quasi-classical Green's function. We show that the surface roughness has a sizable effect, even when a normal layer width is large compared with the coherence length ξ=vF/πTc\xi =v_{\rm F}/\pi T_{\rm c}. The effect is as large as that of the impurity scattering and also as that of the finite reflection at the N-S interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-

    Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases

    Full text link
    C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present infrared and Raman spectra of these materials and show how the rotor-stator nature is reflected in their vibrational properties. We measured the vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8) resulting from a solid state reaction occurring on heating. Based on the spectra we propose a connection pattern for the fullerene in poly(C60C8H8), where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal with green or blue light a photochemical reaction was observed leading to a similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd version: minor changes in wording, accepted version by journa

    Glycan multivalency effects toward albumin enable N-glycan-dependent tumor targeting

    Get PDF
    © 2016 Elsevier Ltd. All rights reserved.Multivalent interactions play an essential role in molecular recognition in living systems. These effects were employed to target tumor cells using albumin clusters bearing ∼10 molecules of asparagine-linked glycans (N-glycans). Noninvasive near-infrared fluorescence imaging clearly revealed A431 tumors implanted in BALB/cA-nu/nu mice after 1 h in an N-glycan structure-dependent manner, thereby demonstrating the efficient use of glycan multivalency effects for tumor targeting in vivo

    Overscreening Diamagnetism in Cylindrical Superconductor-Normal Metal-Heterostructures

    Full text link
    We study the linear diamagnetic response of a superconducting cylinder coated by a normal-metal layer due to the proximity effect using the clean limit quasiclassical Eilenberger equations. We compare the results for the susceptibility with those for a planar geometry. Interestingly, for R∼dR\sim d the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at the interface to the superconductor it can be less than (-1/2) of the applied field. Even for R≫dR\gg d, the diamagnetism can be increased as compared to the planar case, viz. the magnetic susceptibility 4πχ4\pi\chi becomes smaller than -3/4. This behaviour can be explained by an intriguing spatial oscillation of the magnetic field in the normal layer

    Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer

    Get PDF
    We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures

    The Method of Chinese Syntactic Parsing

    Get PDF
    © 2016 The Royal Society of Chemistry.Advanced glycation end products (AGEs) are associated with various diseases, especially during aging and the development of diabetes and uremia. To better understand these biological processes, investigation of the in vivo kinetics of AGEs, i.e., analysis of trafficking and clearance properties, was carried out by molecular imaging. Following the preparation of Cy7.5-labeled AGE-albumin and intravenous injection in BALB/cA-nu/nu mice, noninvasive fluorescence kinetics analysis was performed. In vivo imaging and fluorescence microscopy analysis revealed that non-enzymatic AGEs were smoothly captured by scavenger cells in the liver, i.e., Kupffer and other sinusoidal cells, but were unable to be properly cleared from the body. Overall, these results highlight an important link between AGEs and various disorders associated with them, which may serve as a platform for future research to better understand the processes and mechanisms of these disorders
    • …
    corecore