448 research outputs found
Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments
This publication provides a coherent treatment for the reactor neutrino flux
uncertainties suppression, specially focussed on the latest
measurement. The treatment starts with single detector in single reactor site,
most relevant for all reactor experiments beyond . We demonstrate
there is no trivial error cancellation, thus the flux systematic error can
remain dominant even after the adoption of multi-detector configurations.
However, three mechanisms for flux error suppression have been identified and
calculated in the context of Double Chooz, Daya Bay and RENO sites. Our
analysis computes the error {\it suppression fraction} using simplified
scenarios to maximise relative comparison among experiments. We have validated
the only mechanism exploited so far by experiments to improve the precision of
the published . The other two newly identified mechanisms could
lead to total error flux cancellation under specific conditions and are
expected to have major implications on the global knowledge
today. First, Double Chooz, in its final configuration, is the only experiment
benefiting from a negligible reactor flux error due to a 90\% geometrical
suppression. Second, Daya Bay and RENO could benefit from their partial
geometrical cancellation, yielding a potential 50\% error suppression,
thus significantly improving the global precision today. And
third, we illustrate the rationale behind further error suppression upon the
exploitation of the inter-reactor error correlations, so far neglected. So, our
publication is a key step forward in the context of high precision neutrino
reactor experiments providing insight on the suppression of their intrinsic
flux error uncertainty, thus affecting past and current experimental results,
as well as the design of future experiments
Mass predictions of exotic nuclei within a macro-microscopic model
International audienceDifferent Liquid Drop Model mass formulae have been studied. They include a Coulomb diffuseness correction Z2/A term and pairing and shell energies of the Thomas-Fermi model. The influence of the selected charge radius, the curvature energy and different forms of the Wigner term has been investigated. Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses. The different fits lead to a surface energy coefficient of 17-18 MeV. A large equivalent rms radius (r0 = 1.22 − 1.24 fm) or a shorter central radius may be used. A rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come from the determination of the shell and pairing energies. Mass predictions are given for exotic nuclei
On the liquid drop model mass formulas and alpha decay of the heaviest nuclei
International audienceThe coefficients of different macro-microscopic Liquid Drop Model mass formulas have been determined by a least square fitting procedure to 2027 experimental atomic masses. A rms deviation of 0.54 MeV can be reached. The remaining differences come mainly from the determination of the shell and pairing energies. Extrapolations are compared to 161 new experimental masses and to 656 mass evaluations. The different fits lead to a surface energy coefficient of around 17-18 MeV. Finally, alpha decay potential barriers are revisited and predictions of alpha decay half-lives of still unknown superheavy elements are given from previously proposed analytical formulas and from extrapolated Qalpha values
On the liquid drop model mass formulas and decay of the heaviest nuclei
The coefficients of different macro-microscopic Liquid Drop Model mass formulas have been determined by a least square fitting procedure to 2027 experimental atomic masses. A rms deviation of 0.54 MeV can be reached. The remaining differences come mainly from the determination of the shell and pairing energies. Extrapolations are compared to 161 new experimental masses and to 656 mass evaluations. The different fits lead to a surface energy coefficient of around 17-18 MeV. Finally, decay potential barriers are revisited and predictions of decay half-lives of still unknown superheavy elements are given from previously proposed analytical formulas and from extrapolated Q values
Enseigner l’anglais :: quelles compétences pour les enseignants à l’égard des réformes éducatives ?
Macro-microscopic mass formulae and nuclear mass predictions
Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas-Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess I = (N − Z)/A. Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses [1]. The Coulomb diffuseness correction Z2/A term or the charge exchange correction Z4/3/A1/3 term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17-18 MeV. A large equivalent rms radius (r0 = 1.22−1.24 fm) or a shorter central radius may be used. A rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei
New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products
In this paper, we study the impact of the inclusion of the recently measured
beta decay properties of the Tc, Mo, and
Nb nuclei in an updated calculation of the antineutrino energy spectra
of the four fissible isotopes U, and Pu. These
actinides are the main contributors to the fission processes in Pressurized
Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo
and Nb isotopes have been found to play a major role in the component
of the decay heat of Pu, solving a large part of the
discrepancy in the 4 to 3000\,s range. They have been measured using the Total
Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations
are performed using the information available nowadays in the nuclear
databases, summing all the contributions of the beta decay branches of the
fission products. Our results provide a new prediction of the antineutrino
energy spectra of U, Pu and in particular of U for
which no measurement has been published yet. We conclude that new TAS
measurements are mandatory to improve the reliability of the predicted spectra.Comment: 10 pages, 2 figure
Antineutrino emission and gamma background characteristics from a thermal research reactor
The detailed understanding of the antineutrino emission from research
reactors is mandatory for any high sensitivity experiments either for
fundamental or applied neutrino physics, as well as a good control of the gamma
and neutron backgrounds induced by the reactor operation. In this article, the
antineutrino emission associated to a thermal research reactor: the OSIRIS
reactor located in Saclay, France, is computed in a first part. The calculation
is performed with the summation method, which sums all the contributions of the
beta decay branches of the fission products, coupled for the first time with a
complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor
Evolution code was used, allowing to take into account the contributions of all
beta decayers in-core. This calculation is representative of the isotopic
contributions to the antineutrino flux which can be found at research reactors
with a standard 19.75\% enrichment in U. In addition, the required
off-equilibrium corrections to be applied to converted antineutrino energy
spectra of uranium and plutonium isotopes are provided. In a second part, the
gamma energy spectrum emitted at the core level is provided and could be used
as an input in the simulation of any reactor antineutrino detector installed at
such research facilities. Furthermore, a simulation of the core surrounded by
the pool and the concrete shielding of the reactor has been developed in order
to propagate the emitted gamma rays and neutrons from the core. The origin of
these gamma rays and neutrons is discussed and the associated energy spectrum
of the photons transported after the concrete walls is displayed.Comment: 14 pages, 11 figures, Data in Appendix A and B (13 pages
Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant
Coherent elastic neutrino-nucleus scattering (CENS) offers a unique way
to study neutrino properties and to search for new physics beyond the Standard
Model. Nuclear reactors are promising sources to explore this process at low
energies since they deliver large fluxes of (anti-)neutrinos with typical
energies of a few MeV. In this paper, a new-generation experiment to study
CENS is described. The NUCLEUS experiment will use cryogenic detectors
which feature an unprecedentedly low energy threshold and a time response fast
enough to be operated in above-ground conditions. Both sensitivity to
low-energy nuclear recoils and a high event rate tolerance are stringent
requirements to measure CENS of reactor antineutrinos. A new experimental
site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in
France is described. The VNS is located between the two 4.25 GW
reactor cores and matches the requirements of NUCLEUS. First results of on-site
measurements of neutron and muon backgrounds, the expected dominant background
contributions, are given. In this paper a preliminary experimental setup with
dedicated active and passive background reduction techniques is presented.
Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence
with an active muon-veto at shallow overburden is studied. The paper concludes
with a sensitivity study pointing out the promising physics potential of
NUCLEUS at the Chooz nuclear power plant
- …
