490 research outputs found

    Composition and Conservation Value of Epiphytic Lichen Communities on Common Ash in North-Western Alps: A First Assessment

    Get PDF
    In the western sector of the Alps, and particularly in the Aosta Valley, lichenological communities on broad-leaved trees have received very little attention, and information about lichen species associated with common ash (Fraxinus excelsior L.) are still scanty. Therefore, in this study, we analyzed epiphytic lichen communities of ash trees to estimate their composition, their conservation value, and their association with some key environmental variables. Our results show that lichen communities appear to be different in terms of occurrence and frequencies in different sampling sites. The tested environmental variables contribute to shape the lichen communities, which are significantly different (p Lecanora impudens and Rinodina polyspora) were included in the red list of Italian epiphytic lichens

    Integration of crosswind forces into train dynamic modelling

    Get PDF
    In this paper a new method is used to calculate unsteady wind loadings acting on a railway vehicle. The method takes input data from wind tunnel testing or from computational fluid dynamics simulations (one example of each is presented in this article), for aerodynamic force and moment coefficients and combines these with fluctuating wind velocity time histories and train speed to produce wind force time histories on the train. This method is fast and efficient and this has allowed the wind forces to be applied to a vehicle dynamics simulation for a long length of track. Two typical vehicles (one passenger, one freight) have been modelled using the vehicle dynamics simulation package ‘VAMPIRE®’, which allows detailed modelling of the vehicle suspension and wheel—rail contact. The aerodynamic coefficients of the passenger train have been obtained from wind tunnel tests while those of the freight train have been obtained through fluid dynamic computations using large-eddy simulation. Wind loadings were calculated for the same vehicles for a range of average wind speeds and applied to the vehicle models using a user routine within the VAMPIRE package. Track irregularities measured by a track recording coach for a 40 km section of the main line route from London to King's Lynn were used as input to the vehicle simulations. The simulated vehicle behaviour was assessed against two key indicators for derailment; the Y/Q ratio, which is an indicator of wheel climb derailment, and the Δ Q/Q value, which indicates wheel unloading and therefore potential roll over. The results show that vehicle derailment by either indicator is not predicted for either vehicle for any mean wind speed up to 20 m/s (with consequent gusts up to around 30 m/s). At a higher mean wind speed of 25 m/s derailment is predicted for the passenger vehicle and the unladen freight vehicle (but not for the laden freight vehicle)

    Subjunctive medicine: A manifesto

    Get PDF
    Despite the manifest advantages of modern medicine, many aspects of the experience of illness and healing are not reducible to bodily dysfunction and its restoration. Clinicians and researchers now largely understand that medical practice needs to accommodate a dual aspectivity of the physical body and the lived body. This is increasingly operationalised through the framework of person-centred care, focussed on initiating, integrating, and safeguarding the partnership between the patient-as-person and the clinician-as-person, informed by a narrative perspective on selfhood. In this manifesto, we develop the narrative focus of person-centred care into an alternative framework for medical practice – subjunctive medicine – grounded in ritual efficacy and an explicit appeal to the imagination. We argue that the healing effects of a clinical encounter are reliant on the subjunctive co-construction of a temporary shared social world for a particular purpose. More explicit awareness of the subjunctive nature of the clinical encounter may expand clinicians’ opportunities for healing, whilst fostering resilience. We further suggest that, to be fully actualised, subjunctive medicine requires a shift towards conscious appreciation of the nature of subjunctivity at the social level; a social reawakening to the power of the imagination in modern medicine

    Il progetto EPLORIS: La ricostruzione virtuale dell'eruzione del Vesuvio

    Get PDF
    The main objective of the Exploris project consists in the quantitative analysis of explosive eruption risk in densely populated EU volcanic regions and the evaluation of the likely effectiveness of possible mitigation measures through the development of volcanic risk facilities (such as supercomputer models, vulnerability databases, and probabilistic risk assessment protocols) and their application to high-risk European volcanoes. Exploris’ main ambition is to make a significant step forward in the assessment of explosive eruption risk in highly populated EU cities and islands. For this project, a new simulation model, based on fundamental transport laws to describe the 4D (3D spatial co-ordinates plus time) multiphase flow dynamics of explosive eruptions has been developed and parallelized in INGV and CINECA. Moreover, CINECA developed specific tools to efficiently visualise the results of simulations. This article presents the results of the large numerical simulations, carred out with CINECA’s Supercomputers, to describe the collapse of the volcanic eruption column and the propagation of pyroclastic density currents, for selected medium scale (sub-Plinian) eruptive scenarios at Vesuvius

    An application of parallel computing to the simulation of volcanic eruptions

    Get PDF
    A parallel code for the simulation of the transient 3D dispersal of volcanic particles produced by explosive eruptions is presented. The model transport equations, based on the multiphase flow theory, describe the atmospheric dynamics of the gas-particle mixture ejected through the volcanic crater. The numerics is based on a finite-volume discretization scheme and a pressure-based iterative non-linear solver suited to compressible multiphase flows. The code has been parallelized by adopting an ad hoc domain partitioning scheme that enforces the load balancing. An optimized communication layer has been built over the Message-Passing Interface. The code proved to be remarkably efficient on several high-performance platforms and makes it possible to simulate fully 3D eruptive scenarios on realistic volcano topography

    Distributional pattern of Sardinian orchids under a climate change scenario

    Get PDF
    The Mediterranean is one of the major biodiversity hotspots of the world. It has been identified as the “core” of the speciation process for many groups of organisms. It hosts an impressive number of species, many of which are classified as endangered taxa. Climate change in such a diverse context could heavily influence community composition, reducing ecosystems resistance and resilience. This study aims at depicting the distribution of nine orchid species in the island of Sardinia (Italy), and at forecasting their future distribution in consequence of climate change. The models were produced by following an “ensemble” approach. We analysed present and future (2070) niche for the nine species, using Land Use and Soil Type, as well as 8 bioclimatic variables as predictors, selected because of their influence on the fitness of these orchids. Climate change in the next years, at Mediterranean latitudes, is predicted to results mainly in an increase of temperature and a decrease of precipitation. In 2070, the general trend for almost all modelled taxa is the widening of the suitable areas. However, not always the newly gained areas have high probability of presence. A correct interpretation of environmental changes is needed for developing effective conservation strategies

    New development: Directly elected mayors in Italy: creating a strong leader doesn’t mean creating strong leadership

    Get PDF
    More than 20 years after their introduction, directly elected mayors are key players in Italian urban governance. This article explains the main effects of this reform on local government systems and provides lessons for other countries considering directly elected mayors

    Improving pre-operative planning of robot assisted nephron sparing surgery using three-dimensional anatomical model

    Get PDF
    Introduction Despite the introduction of robot-assisted surgery in daily clinical practice, complex renal masses are still challenging even for expert surgeon. In this scenario 3D anatomical models and augmented reality represent valuable tools for the surgeon. Materials and methods We present a challenging case where PN was mandatory to preserve the overall renal function. The patient was 69 years old, with indwelling catheter for BPH and Parkinson disease. After a single episode of hematuria with negative cystoscopy, a cT1N0M0 renal cancer was diagnosed (38 mm maximum diameter). Pre-operative three-dimensional (3D) model was obtained. After multidisciplinary discussion robot-assisted partial nephrectomy was proposed. The surgery was planned according to the anatomical model. Results Before the procedure a 7Ch single loop ureteral stent was placed. The surgery was carried out in 220 minutes. Selective ischaemia was perfomed for 24 minutes. Estimated blood loss was 400cc. No post-operative complications were observed. Ureteral stent was removed 4 days after the surgery. Definitive histological examination described a pG2-3 T1a Nx R0 clear cell renal carcinoma. Conclusion In selected cases 3D model result to be a useful tool for the pre-operative planning of the surgery
    corecore