113 research outputs found
Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus
Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments. Here, we applied DNP NMR to investigate the structure of a protein containing both an environmentally sensitive folding pathway and an intrinsically disordered region, the yeast prion protein Sup35. We added an exogenously prepared isotopically labeled protein to deuterated lysates, rendering the biological environment âinvisibleâ and enabling highly efficient polarization transfer for DNP. In this environment, structural changes occurred in a region known to influence biological activity but intrinsically disordered in purified samples. Thus, DNP makes structural studies of proteins at endogenous levels in biological contexts possible, and such contexts can influence protein structure.United States. National Institutes of Health (GM-025874)United States. National Institutes of Health (EB-003151)United States. National Institutes of Health (EB-002804)United States. National Institutes of Health (EB-002026
Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps
Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg[superscript 2+] ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N[superscript 2] sorption, [superscript 27]Al/[superscript 29]Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fickâs 2nd law and DâR equation regressions. Among these, close examination of sorption isotherms for H[subscript 2]O and N[subscript 2] adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.United States. Advanced Research Projects Agency-Energy (0471-1627)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Awards EB-001960 and EB-002026)Natural Sciences and Engineering Research Council of Canada (Postgraduate Fellowship
Molecular Structure and Confining Environment of Sn Sites in Single-Site Chabazite Zeolites
Chabazite (CHA) molecular sieves, which are industrial catalysts for the selective reduction of nitrogen oxides and the conversion of methanol into olefins, are also ideal materials in catalysis research because their crystalline frameworks contain one unique tetrahedral-site. The presence of a single lattice site allows for more accurate descriptions of experimental data using theoretical models, and consequently for more precise structure-function relationships of active sites incorporated into framework positions. A direct hydrothermal synthesis route to prepare pure-silica chabazite molecular sieves substituted with framework Sn atoms (Sn-CHA) is developed, which is required to predominantly incorporate Sn within the crystalline lattice. Quantitative titra-tion with Lewis bases (NH3, CD3CN, pyridine) demonstrates that framework Sn atoms behave as Lewis acid sites, which catalyze intermolecular propionaldehyde reduction and ethanol oxidation, as well as glucose-fructose isomerization. Aqueous-phase glucose isomerization turnover rates on Sn-CHA are four orders-of-magnitude lower than on Sn-Beta zeolites, but similar to those on amorphous Sn-silicates. Further analysis of Sn-CHA by dynamic nuclear polarization enhanced solid-state nuclear magnetic reso-nance (DNP NMR) spectroscopy enables measurement of 119Sn NMR chemical shift anisotropy (CSA) of Sn sites. Comparison of experimentally determined CSA parameters to those computed on cluster models using density functional theory supports the pres-ence of closed sites (Sn-(OSi)4) and defect sites ((HO)-Sn-(OSi)3) adjacent to a framework Si vacancy), which respectively be-come hydrated hydrolyzed-open sites and defect sites when Sn-CHA is exposed to ambient conditions or aqueous solution. Kinetic and spectroscopic data show that large substrates (e.g., glucose) are converted only on Sn sites located within disordered mesopo-rous voids of Sn-CHA, which are selectively detected and quantified in IR and 15N and 119Sn DNP NMR spectra using pyridine titrants. This integrated experimental and theoretical approach allows precise description of the primary coordination and secondary confining environments of Sn active sites isolated in crystalline silica frameworks, and clearly establishes the role of confinement within microporous voids for aqueous-phase glucose isomerization catalysis
Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy
Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands
Topical Developments in High-Field Dynamic Nuclear Polarization
We report our recent efforts directed at improving high-field dynamic nuclear polarization (DNP) experiments. We investigated a series of thiourea nitroxide radicals and the associated DNP enhancements ranging from Δ=25 to 82, which demonstrate the impact of molecular structure on performance. We directly polarized low-gamma nuclei, including [superscript 13]C, [superscript 2]H, and [superscript 17]O, by the cross effect mechanism using trityl radicals as a polarization agent. We discuss a variety of sample preparation techniques for DNP with emphasis on the benefits of methods that do not use a glass-forming cryoprotecting matrix. Lastly, we describe a corrugated waveguide for use in a 700â
MHz/460â
GHz DNP system that improves microwave delivery and increases enhancements up to 50%.National Institutes of Health (U.S.) (Grant EB002804)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026)National Institutes of Health (U.S.) (Grant EB001960)National Institutes of Health (U.S.) (Grant EB001035)National Institutes of Health (U.S.) (Grant EB001965)National Institutes of Health (U.S.) (Grant EB004866)National Institute of General Medical Sciences (U.S.) (Grant GM095843)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship
Designed Single-Step Synthesis, Structure, and Derivative Textural Properties of Well-Ordered Layered Penta-coordinate Silicon Alcoholate Complexes
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+[BOND]O2â ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10Ä«)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter-ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7â
m2âgâ1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metalâorganic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.United States. Defense Advanced Research Projects Agency (control No. 0471-1627)National Institute for Biomedical Imaging and Bioengineering (U.S.) (award No. EB-001960)National Institutes of Health (U.S.) (NIBIB award No. EB-002026)National Science Foundation (U.S.) (Grant No. CHE-0946721
Association Between Acid-Sensing Ion Channel 3 Gene Variants and Balance Impairment in People With Mild Traumatic Brain Injury
Introduction: Dizziness and balance impairment are common symptoms of mild traumatic brain injury (mTBI). Acid-sensing ion channel 3 (ASIC3) is expressed in the vestibular and proprioceptive systems and associated with balance functions. However, whether the genetic variants of ASIC3 are associated with people who suffer dizziness and balance impairment after mTBI remained unknown.Materials and methods: A total of 200 people with mTBI and 109 non-mTBI controls were recruited. Dizziness, balance functions, and the ability to perform daily activities were assessed by Dizziness Handicap Inventory (DHI), and objective balance functions were investigated by the postural stability test. Three diseases-related genetic variants of ASIC3 were determined through polymerase chain reaction and followed by restriction fragment length polymorphism. The Student's t-test and Mann-Whitney U-test were used for normal and abnormal distributed data, respectively. The regression was applied to adjust gender and age. The normality of continuous data was evaluated by Shapiro-Wilk test.Results: In the mTBI people, the rs2288645-A allele carriers exhibited a significantly worse physical domain DHI score (A-allele carriers: 11.39 ± 8.42, non-A carriers: 8.76 ± 7.87, p = 0.03). The rs4148855-GTC deletion carriers an exhibited significantly worse overall postural stability (GTC deletion carriers: 0.53 ± 0.33, non-carriers: 0.46 ± 0.20, p = 0.03). In the controls, rs2288646-A allele carriers were significant worse in the medial-to-lateral postural stability (A-allele carriers: 0.31 ± 0.17, non-A carriers: 0.21 ± 0.10, p = 0.01).Conclusion: The present study demonstrated that ASIC3 genetic variants were associated with certain aspects of balance functions and dizziness questionnaires in people of mTBI and non-mTBI. It provides a possible evidence that ASIC3 could be a new target for the management of the balancing disorders. However, further investigations are warranted to elucidate the underlying mechanisms and clinical significance
Controversy and consensus on indications for sperm DNA fragmentation testing in male infertility: a global survey, current guidelines, and expert recommendations.
PURPOSE: Sperm DNA fragmentation (SDF) testing was recently added to the sixth edition of the World Health Organization laboratory manual for the examination and processing of human semen. Many conditions and risk factors have been associated with elevated SDF; therefore, it is important to identify the population of infertile men who might benefit from this test. The purpose of this study was to investigate global practices related to indications for SDF testing, compare the relevant professional society guideline recommendations, and provide expert recommendations. MATERIALS AND METHODS: Clinicians managing male infertility were invited to take part in a global online survey on SDF clinical practices. This was conducted following the CHERRIES checklist criteria. The responses were compared to professional society guideline recommendations related to SDF and the appropriate available evidence. Expert recommendations on indications for SDF testing were then formulated, and the Delphi method was used to reach consensus. RESULTS: The survey was completed by 436 experts from 55 countries. Almost 75% of respondents test for SDF in all or some men with unexplained or idiopathic infertility, 39% order it routinely in the work-up of recurrent pregnancy loss (RPL), and 62.2% investigate SDF in smokers. While 47% of reproductive urologists test SDF to support the decision for varicocele repair surgery when conventional semen parameters are normal, significantly fewer general urologists (23%; p=0.008) do the same. Nearly 70% would assess SDF before assisted reproductive technologies (ART), either always or for certain conditions. Recurrent ART failure is a common indication for SDF testing. Very few society recommendations were found regarding SDF testing. CONCLUSIONS: This article presents the largest global survey on the indications for SDF testing in infertile men, and demonstrates diverse practices. Furthermore, it highlights the paucity of professional society guideline recommendations. Expert recommendations are proposed to help guide clinicians
Controversy and consensus on the management of elevated sperm DNA fragmentation in male infertility: a global survey, current guidelines, and expert recommendations
PURPOSE: Sperm DNA fragmentation (SDF) has been associated with male infertility and poor outcomes of assisted reproductive technology (ART). The purpose of this study was to investigate global practices related to the management of elevated SDF in infertile men, summarize the relevant professional society recommendations, and provide expert recommendations for managing this condition. MATERIALS AND METHODS: An online global survey on clinical practices related to SDF was disseminated to reproductive clinicians, according to the CHERRIES checklist criteria. Management protocols for various conditions associated with SDF were captured and compared to the relevant recommendations in professional society guidelines and the appropriate available evidence. Expert recommendations and consensus on the management of infertile men with elevated SDF were then formulated and adapted using the Delphi method. RESULTS: A total of 436 experts from 55 different countries submitted responses. As an initial approach, 79.1% of reproductive experts recommend lifestyle modifications for infertile men with elevated SDF, and 76.9% prescribe empiric antioxidants. Regarding antioxidant duration, 39.3% recommend 4-6 months and 38.1% recommend 3 months. For men with unexplained or idiopathic infertility, and couples experiencing recurrent miscarriages associated with elevated SDF, most respondents refer to ART 6 months after failure of conservative and empiric medical management. Infertile men with clinical varicocele, normal conventional semen parameters, and elevated SDF are offered varicocele repair immediately after diagnosis by 31.4%, and after failure of antioxidants and conservative measures by 40.9%. Sperm selection techniques and testicular sperm extraction are also management options for couples undergoing ART. For most questions, heterogenous practices were demonstrated. CONCLUSIONS: This paper presents the results of a large global survey on the management of infertile men with elevated SDF and reveals a lack of consensus among clinicians. Furthermore, it demonstrates the scarcity of professional society guidelines in this regard and attempts to highlight the relevant evidence. Expert recommendations are proposed to help guide clinicians
- âŠ