6 research outputs found

    Hepatic Gene Expression Profiles Differentiate Steatotic and Non-steatotic Grafts in Liver Transplant Recipients

    Get PDF
    Background: Liver transplantation leads to non-alcoholic fatty liver disease or non-alcoholic steatohepatitis in up to 40% of graft recipients. The aim of our study was to assess transcriptomic profiles of liver grafts and to contrast the hepatic gene expression between the patients after transplantation with vs. without graft steatosis.Methods: Total RNA was isolated from liver graft biopsies of 91 recipients. Clinical characteristics were compared between steatotic (n = 48) and control (n = 43) samples. Their transcriptomic profiles were assessed using Affymetrix HuGene 2.1 ST Array Strips processed in Affymetrix GeneAtlas. Data were analyzed using Partek Genomics Suite 6.6 and Ingenuity Pathway Analysis.Results: The individuals with hepatic steatosis showed higher indices of obesity including weight, waist circumference or BMI but the two groups were comparable in measures of insulin sensitivity and cholesterol concentrations. We have identified 747 transcripts (326 upregulated and 421 downregulated in steatotic samples compared to controls) significantly differentially expressed between grafts with vs. those without steatosis. Among the most downregulated genes in steatotic samples were P4HA1, IGF1, or fetuin B while the most upregulated were PLIN1 and ME1. Most influential upstream regulators included HNF1A, RXRA, and FXR. The metabolic pathways dysregulated in steatotic liver grafts comprised blood coagulation, bile acid synthesis and transport, cell redox homeostasis, lipid and cholesterol metabolism, epithelial adherence junction signaling, amino acid metabolism, AMPK and glucagon signaling, transmethylation reactions, and inflammation-related pathways. The derived mechanistic network underlying major transcriptome differences between steatotic samples and controls featured PPARA and SERPINE1 as main nodes.Conclusions: While there is a certain overlap between the results of the current study and published transcriptomic profiles of non-transplanted livers with steatosis, we have identified discrete characteristics of the non-alcoholic fatty liver disease in liver grafts potentially utilizable for the establishment of predictive signature

    Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model

    No full text
    Excessive methylglyoxal (MG) production contributes to metabolic and vascular changes by increasing inflammatory processes, disturbing regulatory mechanisms and exacerbating tissue dysfunction. MG accumulation in adipocytes leads to structural and functional changes. We used transcriptome analysis to investigate the effect of MG on metabolic changes in the visceral adipose tissue of hereditary hypetriglyceridaemic rats, a non-obese model of metabolic syndrome. Compared to controls, 4-week intragastric MG administration impaired glucose tolerance (p < 0.05) and increased glycaemia (p < 0.01) and serum levels of MCP-1 and TNFα (p < 0.05), but had no effect on serum adiponectin or leptin. Adipose tissue insulin sensitivity and lipolysis were impaired (p < 0.05) in MG-treated rats. In addition, MG reduced the expression of transcription factor Nrf2 (p < 0.01), which controls antioxidant and lipogenic genes. Increased expression of Mcp-1 and TNFα (p < 0.05) together with activation of the SAPK/JNK signaling pathway can promote chronic inflammation in adipose tissue. Transcriptome network analysis revealed the over-representation of genes involved in insulin signaling (Irs1, Igf2, Ide), lipid metabolism (Nr1d1, Lpin1, Lrpap1) and angiogenesis (Dusp10, Tp53inp1)

    Data from: Cd36-deficient congenic strains show improved glucose tolerance and distinct shifts in metabolic and transcriptomic profiles

    No full text
    Deficiency of fatty acid translocase Cd36 has been shown to have a major role in the pathogenesis of metabolic syndrome in the spontaneously hypertensive rat (SHR). We have tested the hypothesis that the effects of Cd36 mutation on the features of metabolic syndrome are contextually dependent on genomic background. We have derived two new congenic strains by introgression of limited chromosome 4 regions of SHR origin, both including the defective Cd36 gene, into the genetic background of a highly inbred model of insulin resistance and dyslipidemia, polydactylous (PD) rat strain. We subjected standard diet-fed adult males of PD and the congenic PD.SHR4 strains to metabolic, morphometric and transcriptomic profiling. We observed significantly improved glucose tolerance and lower fasting insulin levels in PD.SHR4 congenics than in PD. One of the PD.SHR4 strains showed lower triglyceride concentrations across major lipoprotein fractions combined with higher levels of low-density lipoprotein cholesterol compared with the PD progenitor. The hepatic transcriptome assessment revealed a network of genes differentially expressed between PD and PD.SHR4 with significant enrichment by members of the circadian rhythmicity pathway (Arntl (Bmal1), Clock, Nfil3, Per2 and Per3). In summary, the introduction of the chromosome 4 region of SHR origin including defective Cd36 into the PD genetic background resulted in disconnected shifts of metabolic profile along with distinct changes in hepatic transcriptome. The synthesis of the current results with those obtained in other Cd36-deficient strains indicates that the eventual metabolic effect of a deleterious mutation such as that of SHR-derived Cd36 is not absolute, but rather a function of complex interactions between environmental and genomic background, upon which it operates
    corecore