22 research outputs found

    Sero – epidemiology of brucellosis in people and their livestock:A linked human – animal cross-sectional study in a pastoralist community in Kenya

    Get PDF
    BACKGROUND: Brucellosis is associated with massive livestock production losses and human morbidity worldwide. Efforts to control brucellosis among pastoralist communities are limited by scarce data on the prevalence and risk factors for exposure despite the high human-animal interactions in these communities. This study simultaneously assessed the seroprevalence of brucellosis and associated factors of exposure among pastoralists and their livestock in same households. METHODS: We conducted a cross-sectional study in pastoralist communities in Marsabit County – Kenya. A total of 1,074 women and 225 children participated and provided blood samples. Blood was also drawn from 1,876 goats, 322 sheep and 189 camels. Blood samples were collected to be screened for the presence of anti-Brucella IgG antibodies using indirect IgG Enzyme-Linked Immunosorbent Assay (ELISA) kits. Further, Individual, household and herd-level epidemiological information were captured using a structured questionnaire. Group differences were compared using the Pearson's Chi-square test, and p-values < 0.05 considered statistically significant. Generalized mixed-effects multivariable logistic human and animal models using administrative ward as the random effect was used to determine variables correlated to the outcome. RESULTS: Household-level seropositivity was 12.7% (95% CI: 10.7–14.8). The individual human seroprevalence was 10.8% (9.1–12.6) with higher seroprevalence among women than children (12.4 vs. 3.1%, p < 0.001). Herd-level seroprevalence was 26.1% (23.7–28.7) and 19.2% (17.6–20.8) among individual animals. Goats had the highest seroprevalence 23.1% (21.2 – 25.1), followed by sheep 6.8% (4.3–10.2) and camels 1.1% (0.1–3.8). Goats and sheep had a higher risk of exposure OR = 3.8 (95% CI 2.4–6.7, p < 0.001) and 2.8 (1.2–5.6, p < 0.007), respectively relative to camels. Human and animal seroprevalence were significantly associated (OR = 1.8, [95%CI: 1.23–2.58], p = 0.002). Herd seroprevalence varied by household head education (OR = 2.45, [1.67–3.61, p < 0.001]) and herd size (1.01, [1.00–1.01], p < 0.001). CONCLUSIONS: The current study showed evidence that brucellosis is endemic in this pastoralist setting and there is a significant association between animal and human brucellosis seropositivity at household level representing a potential occupational risk. Public health sensitization and sustained human and animal brucellosis screening are required

    Evidence of superficial knowledge regarding antibiotics and their use: Results of two cross-sectional surveys in an urban informal settlement in Kenya

    Get PDF
    <div><p>We assessed knowledge and practices related to antibiotic use in Kibera, an urban informal settlement in Kenya. Surveys was employed at the beginning (entry) and again at the end (exit) of a 5-month longitudinal study of AMR. Two-hundred households were interviewed at entry, of which 149 were also interviewed at exit. The majority (>65%) of respondents in both surveys could name at least one antibiotic, with amoxicillin and cotrimoxazole jointly accounting for 85% and 77% of antibiotics mentioned during entry and exit, respectively. More than 80% of respondents felt antibiotics should not be shared or discontinued following the alleviation of symptoms. Nevertheless, 66% and 74% of respondents considered antibiotics effective for treating colds and flu in the entry and exit surveys, respectively. There was a high (87%, entry; 70% exit) level of reported antibiotic use (past 12 months) mainly for colds/flu, coughs and fever, with >80% of respondents obtaining antibiotics from health facilities and pharmacies. Less than half of respondents remembered getting information on the correct use of antibiotics, although 100% of those who did reported improved attitudes towards antibiotic use. Clinicians and community pharmacists were highly trusted information sources. Paired household responses (n = 149) generally showed improved knowledge and attitudes by the exit survey although practices were largely unchanged. Weak agreement (κ = -0.003 to 0.22) between survey responses suggest both that unintended learning had not occurred, and that participant responses were not based on established knowledge or behaviors. Targeted public education regarding antibiotics is needed to address this gap.</p></div

    Prioritization of zoonotic diseases in Kenya, 2015

    Get PDF
    INTRODUCTION:Zoonotic diseases have varying public health burden and socio-economic impact across time and geographical settings making their prioritization for prevention and control important at the national level. We conducted systematic prioritization of zoonotic diseases and developed a ranked list of these diseases that would guide allocation of resources to enhance their surveillance, prevention, and control. METHODS:A group of 36 medical, veterinary, and wildlife experts in zoonoses from government, research institutions and universities in Kenya prioritized 36 diseases using a semi-quantitative One Health Zoonotic Disease Prioritization tool developed by Centers for Disease Control and Prevention with slight adaptations. The tool comprises five steps: listing of zoonotic diseases to be prioritized, development of ranking criteria, weighting criteria by pairwise comparison through analytical hierarchical process, scoring each zoonotic disease based on the criteria, and aggregation of scores. RESULTS:In order of importance, the participants identified severity of illness in humans, epidemic/pandemic potential in humans, socio-economic burden, prevalence/incidence and availability of interventions (weighted scores assigned to each criteria were 0.23, 0.22, 0.21, 0.17 and 0.17 respectively), as the criteria to define the relative importance of the diseases. The top five priority diseases in descending order of ranking were anthrax, trypanosomiasis, rabies, brucellosis and Rift Valley fever. CONCLUSION:Although less prominently mentioned, neglected zoonotic diseases ranked highly compared to those with epidemic potential suggesting these endemic diseases cause substantial public health burden. The list of priority zoonotic disease is crucial for the targeted allocation of resources and informing disease prevention and control programs for zoonoses in Kenya

    High Prevalence of Rickettsia africae Variants in Amblyomma variegatum Ticks from Domestic Mammals in Rural Western Kenya: Implications for Human Health

    Get PDF
    Tick-borne spotted fever group (SFG) rickettsioses are emerging human diseases caused by obligate intracellular Gram-negative bacteria of the genus Rickettsia. Despite being important causes of systemic febrile illnesses in travelers returning from sub-Saharan Africa, little is known about the reservoir hosts of these pathogens. We conducted surveys for rickettsiae in domestic animals and ticks in a rural setting in western Kenya. Of the 100 serum specimens tested from each species of domestic ruminant 43% of goats, 23% of sheep, and 1% of cattle had immunoglobulin G (IgG) antibodies to the SFG rickettsiae. None of these sera were positive for IgG against typhus group rickettsiae. We detected Rickettsia africae–genotype DNA in 92.6% of adult Amblyomma variegatum ticks collected from domestic ruminants, but found no evidence of the pathogen in blood specimens from cattle, goats, or sheep. Sequencing of a subset of 21 rickettsia-positive ticks revealed R. africae variants in 95.2% (20/21) of ticks tested. Our findings show a high prevalence of R. africae variants in A. variegatum ticks in western Kenya, which may represent a low disease risk for humans. This may provide a possible explanation for the lack of African tick-bite fever cases among febrile patients in Kenya

    Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review.

    Get PDF
    BACKGROUND The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. MAIN BODY The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. CONCLUSION The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making

    WHO global research priorities for antimicrobial resistance in human health

    Get PDF
    The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR

    WHO global research priorities for antimicrobial resistance in human health

    Get PDF
    The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR
    corecore