85 research outputs found

    Central oxytocin and food intake: focus on macronutrient-driven reward

    Get PDF
    Centrally acting oxytocin (OT) is known to terminate food consumption in response to excessive stomach distension, increase in salt loading, and presence of toxins. Hypothalamic-hindbrain OT pathways facilitate these aspects of OT-induced hypophagia. However, recent discoveries have implicated OT in modifications of feeding via reward circuits: OT has been found to differentially affect consumption of individual macronutrients in choice and no-choice paradigms. In this mini-review, we focus on presenting and interpreting evidence that defines OT as a key component of mechanisms that reduce eating for pleasure and shape macronutrient preferences. We also provide remarks on challenges in integrating the knowledge on physiological and pathophysiological states in which both OT activity and macronutrient preferences are affected

    Adhesion GPCRs are widely expressed throughout the subsections of the gastrointestinal tract

    Get PDF
    Background: G protein-coupled receptors (GPCRs) represent one of the largest families of transmembrane receptors and the most common drug target. The Adhesion subfamily is the second largest one of GPCRs and its several members are known to mediate neural development and immune system functioning through cell-cell and cell-matrix interactions. The distribution of these receptors has not been characterized in detail in the gastrointestinal (GI) tract. Here we present the first comprehensive anatomical profiling of mRNA expression of all 30 Adhesion GPCRs in the rat GI tract divided into twelve subsegments. Methods: Using RT-qPCR, we studied the expression of Adhesion GPCRs in the esophagus, the corpus and antrum of the stomach, the proximal and distal parts of the duodenum, ileum, jejunum and colon, and the cecum. Results: We found that twenty-one Adhesion GPCRs (70%) had a widespread (expressed in five or more segments) or ubiquitous (expressed in eleven or more segments) distribution, seven (23%) were restricted to a few segments of the GI tract and two were not expressed in any segment. Most notably, almost all Group III members were ubiquitously expressed, while the restricted expression was characteristic for the majority of group VII members, hinting at more specific/localized roles for some of these receptors. Conclusions: Overall, the distribution of Adhesion GPCRs points to their important role in GI tract functioning and defines them as a potentially crucial target for pharmacological interventions. © 2012 Badiali et al.; licensee BioMed Central Ltd

    Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The SLC17 family of transporters transports the amino acids: glutamate and aspartate, and, as shown recently, also nucleotides. Vesicular glutamate transporters are found in distinct species, such as <it>C. elegans</it>, but the evolutionary origin of most of the genes in this family has been obscure.</p> <p>Results</p> <p>Our phylogenetic analysis shows that the SLC17 family consists of four main phylogenetic clades which were all present before the divergence of the insect lineage. One of these clades has not been previously described and it is not found in vertebrates. The clade containing Slc17a9 had the most restricted evolutionary history with only one member in most species. We detected expression of Slc17a1-17a4 only in the peripheral tissues but not in the CNS, while Slc17a5- Slc17a9 are highly expressed in both the CNS and periphery.</p> <p>Conclusions</p> <p>The <it>in situ </it>hybridization studies on vesicular nucleotide transporter revealed high expression throughout the cerebral cortex, certain areas in the hippocampus and in specific nuclei of the hypothalamus and thalamus. Some of the regions with high expression, such as the medial habenula and the dentate gyrus of the hippocampus, are important sites for purinergic neurotransmission. Noteworthy, other areas relying on purine-mediated signaling, such as the molecular layer of the dentate gyrus and the periaqueductal gray, lack or have a very low expression of Slc17a9, suggesting that there could be another nucleotide transporter in these regions.</p

    Higher-order scalar interactions and SM vacuum stability

    Get PDF
    Investigation of the structure of the Standard Model effective potential at very large field strengths opens a window towards new phenomena and can reveal properties of the UV completion of the SM. The map of the lifetimes of the vacua of the SM enhanced by nonrenormalizable scalar couplings has been compiled to show how new interactions modify stability of the electroweak vacuum. Whereas it is possible to stabilize the SM by adding Planck scale suppressed interactions and taking into account running of the new couplings, the generic effect is shortening the lifetime and hence further destabilisation of the SM electroweak vacuum. These findings have been illustrated with phase diagrams of modified SM-like models. It has been demonstrated that stabilisation can be achieved by lowering the suppression scale of higher order operators while picking up such combinations of new couplings, which do not deepen the new minima of the potential. Our results show the dependence of the lifetime of the electroweak minimum on the magnitude of the new couplings, including cases with very small couplings (which means very large effective suppression scale) and couplings vastly different in magnitude (which corresponds to two different suppression scales).Comment: plain Latex, 9 figure

    Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Fat mass and obesity gene (FTO) has been identified through genome wide association studies as an important genetic factor contributing to a higher body mass index (BMI). However, the molecular context in which this effect is mediated has yet to be determined. We investigated the potential molecular network for FTO by analyzing co-expression and protein-protein interaction databases, Coxpresdb and IntAct, as well as the functional coupling predicting multi-source database, FunCoup. Hypothalamic expression of FTO-linked genes defined with this bioinformatics approach was subsequently studied using quantitative real time-PCR in mouse feeding models known to affect FTO expression.</p> <p>Results</p> <p>We identified several candidate genes for functional coupling to FTO through database studies and selected nine for further study in animal models. We observed hypothalamic expression of Profilin 2 (Pfn2), cAMP-dependent protein kinase catalytic subunit beta (Prkacb), Brain derived neurotrophic factor (Bdnf), neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2), Signal transducer and activator of transcription 3 (Stat3), and Btbd12 to be co-regulated in concert with Fto. Pfn2 and Prkacb have previously not been linked to feeding regulation.</p> <p>Conclusions</p> <p>Gene expression studies validate several candidates generated through database studies of possible FTO-interactors. We speculate about a wider functional role for FTO in the context of current and recent findings, such as in extracellular ligand-induced neuronal plasticity via NTRK2/BDNF, possibly via interaction with the transcription factor CCAAT/enhancer binding protein β (C/EBPβ).</p

    The orphan G protein-coupled receptor gene GPR178 is evolutionary conserved and altered in response to acute changes in food intake

    Get PDF
    G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating physiological functions fundamental for survival, including energy homeostasis. A few years ago, an amino acid sequence of a novel GPCR gene was identified and named GPR178. In this study, we provide new insights regarding the biological significance of Gpr178 protein, investigating its evolutionary history and tissue distribution as well as examining the relationship between its expression level and feeding status. Our phylogenetic analysis indicated that GPR178 is highly conserved among all animal species investigated, and that GPR178 is not a member of a protein family. Real-time PCR and in situ hybridization revealed wide expression of Gpr178 mRNA in both the brain and periphery, with high expression density in the hypothalamus and brainstem, areas involved in the regulation of food intake. Hence, changes in receptor expression were assessed following several feeding paradigms including starvation and overfeeding. Short-term starvation (12-48h) or food restriction resulted in upregulation of Gpr178 mRNA expression in the brainstem, hypothalamus and prefrontal cortex. Conversely, short-term (48h) exposure to sucrose or Intralipid solutions downregulated Gpr178 mRNA in the brainstem; long-term exposure (10 days) to a palatable high-fat and high-sugar diet resulted in a downregulation of Gpr178 in the amygdala but not in the hypothalamus. Our results indicate that hypothalamic Gpr178 gene expression is altered during acute exposure to starvation or acute exposure to palatable food. Changes in gene expression following palatable diet consumption suggest a possible involvement of Gpr178 in the complex mechanisms of feeding reward

    Intragastric preloads of L-tryptophan reduce ingestive behavior via oxytocinergic neural mechanisms in male mice

    Get PDF
    Human and laboratory animal studies suggest that dietary supplementation of a free essential amino acid, l-tryptophan (TRP), reduces food intake. It is unclear whether an acute gastric preload of TRP decreases consumption and whether central mechanisms underlie TRP-driven hypophagia. We examined the effect of TRP administered via intragastric gavage on energy- and palatability-induced feeding in mice. We sought to identify central mechanisms through which TRP suppresses appetite. Effects of TRP on consumption of energy-dense and energy-dilute tastants were established in mice stimulated to eat by energy deprivation or palatability. A conditioned taste aversion (CTA) paradigm was used to assess whether hypophagia is unrelated to sickness. c-Fos immunohistochemistry was employed to detect TRP-induced activation of feeding-related brain sites and of oxytocin (OT) neurons, a crucial component of satiety circuits. Also, expression of OT mRNA was assessed with real-time PCR. The functional importance of OT in mediating TRP-driven hypophagia was substantiated by showing the ability of OT receptor blockade to abolish TRP-induced decrease in feeding. TRP reduced intake of energy-dense standard chow in deprived animals and energy-dense palatable chow in sated mice. Anorexigenic doses of TRP did not cause a CTA. TRP failed to affect intake of palatable yet calorie-dilute or noncaloric solutions (10% sucrose, 4.1% Intralipid or 0.1% saccharin) even for TRP doses that decreased water intake in thirsty mice. Fos analysis revealed that TRP increases activation of several key feeding-related brain areas, especially in the brain stem and hypothalamus. TRP activated hypothalamic OT neurons and increased OT mRNA levels, whereas pretreatment with an OT antagonist abolished TRP-driven hypophagia. We conclude that intragastric TRP decreases food and water intake, and TRP-induced hypophagia is partially mediated via central circuits that encompass OT

    Transcriptional changes in response to ketamine ester-analogs SN 35210 and SN 35563 in the rat brain

    Get PDF
    Background Ketamine ester analogs, SN 35210 and SN 35563, demonstrate different pharmacological profiles to ketamine in animal models. Both confer hypnosis with predictably rapid offset yet, paradoxically, SN35563 induces a prolonged anti-nociceptive state. To explore underlying mechanisms, broad transcriptome changes were measured and compared across four relevant target regions of the rat brain. Results SN 35563 produced large-scale alteration of gene expression in the Basolateral Amygdala (BLA) and Paraventricular Nucleus of the Thalamus (PVT), in excess of 10x that induced by ketamine and SN 35210. A smaller and quantitatively similar number of gene changes were observed in the Insula (INS) and Nucleus Accumbens (ACB) for all three agents. In the BLA and PVT, SN 35563 caused enrichment for gene pathways related to the function and structure of glutamatergic synapses in respect to: release of neurotransmitter, configuration of postsynaptic AMPA receptors, and the underlying cytoskeletal scaffolding and alignment. Conclusion The analgesic ketamine ester analog SN 35563 induces profound large-scale changes in gene expression in key pain-related brain regions reflecting its unique prolonged pharmacodynamic profile

    Hypothalamic FTO is associated with the regulation of energy intake not feeding reward

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphism in the FTO gene is strongly associated with obesity, but little is known about the molecular bases of this relationship. We investigated whether hypothalamic FTO is involved in energy-dependent overconsumption of food. We determined FTO mRNA levels in rodent models of short- and long-term intake of palatable fat or sugar, deprivation, diet-induced increase in body weight, baseline preference for fat versus sugar as well as in same-weight animals differing in the inherent propensity to eat calories especially upon availability of diverse diets, using quantitative PCR. FTO gene expression was also studied in organotypic hypothalamic cultures treated with anorexigenic amino acid, leucine. In situ hybridization (ISH) was utilized to study FTO signal in reward- and hunger-related sites, colocalization with anorexigenic oxytocin, and c-Fos immunoreactivity in FTO cells at initiation and termination of a meal.</p> <p>Results</p> <p>Deprivation upregulated FTO mRNA, while leucine downregulated it. Consumption of palatable diets or macronutrient preference did not affect FTO expression. However, the propensity to ingest more energy without an effect on body weight was associated with lower FTO mRNA levels. We found that 4-fold higher number of FTO cells displayed c-Fos at meal termination as compared to initiation in the paraventricular and arcuate nuclei of re-fed mice. Moreover, ISH showed that FTO is present mainly in hunger-related sites and it shows a high degree of colocalization with anorexigenic oxytocin.</p> <p>Conclusion</p> <p>We conclude that FTO mRNA is present mainly in sites related to hunger/satiation control; changes in hypothalamic FTO expression are associated with cues related to energy intake rather than feeding reward. In line with that, neurons involved in feeding termination express FTO. Interestingly, baseline FTO expression appears linked not only with energy intake but also energy metabolism.</p
    corecore