19,962 research outputs found

    Dynamos with weakly convecting outer layers: implications for core-mantle boundary interaction

    Get PDF
    Convection in the Earth's core is driven much harder at the bottom than the top. This is partly because the adiabatic gradient steepens towards the top, partly because the spherical geometry means the area involved increases towards the top, and partly because compositional convection is driven by light material released at the lower boundary and remixed uniformly throughout the outer core, providing a volumetric sink of buoyancy. We have therefore investigated dynamo action of thermal convection in a Boussinesq fluid contained within a rotating spherical shell driven by a combination of bottom and internal heating or cooling. We first apply a homogeneous temperature on the outer boundary in order to explore the effects of heat sinks on dynamo action; we then impose an inhomogeneous temperature proportional to a single spherical harmonic Y2² in order to explore core-mantle interactions. With homogeneous boundary conditions and moderate Rayleigh numbers, a heat sink reduces the generated magnetic field appreciably; the magnetic Reynolds number remains high because the dominant toroidal component of flow is not reduced significantly. The dipolar structure of the field becomes more pronounced as found by other authors. Increasing the Rayleigh number yields a regime in which convection inside the tangent cylinder is strongly affected by the magnetic field. With inhomogeneous boundary conditions, a heat sink promotes boundary effects and locking of the magnetic field to boundary anomalies. We show that boundary locking is inhibited by advection of heat in the outer regions. With uniform heating, the boundary effects are only significant at low Rayleigh numbers, when dynamo action is only possible for artificially low magnetic diffusivity. With heat sinks, the boundary effects remain significant at higher Rayleigh numbers provided the convection remains weak or the fluid is stably stratified at the top. Dynamo action is driven by vigorous convection at depth while boundary thermal anomalies dominate in the upper regions. This is a likely regime for the Earth's core

    PROJECTED CONSUMPTION OF LIVESTOCK PRODUCTS

    Get PDF
    The U.S. consumption pattern of livestock products has changed considerably and is expected to keep changing. The first part of this paper reviews the consumption trends and the price and nonprice factors affecting those trends. In the second part, future consumption patterns are projected. The projections of the constant income elasticity model and the Tornquist functions are rejected due to recent trends which do not receive enough weight in these models. A third model which projects consumption shares is selected as a more accurate predictor. By the year 2010, national consumption of beef is estimated to decrease by 5 to 10%; pork to increase by up to 5%. Lamb and mutton will continue to be consumed less. Poultry consumption will increase dramatically while egg consumption will decrease.Food Consumption/Nutrition/Food Safety, Livestock Production/Industries,

    High-performance light-weight electrodes for hydrogen-oxygen fuel cells

    Get PDF
    High performance light weight electrodes for hydrogen oxygen fuel cell

    Hybrid Wing Body Planform Design with Vehicle Sketch Pad

    Get PDF
    The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed

    Formaldehyde over the central Pacific during PEM-Tropics B

    Get PDF
    Formaldehyde, CH2O, mixing ratios are reported for the central Pacific troposphere from a series of 41 flights, which took place in March-April 1999 as part of the NASA Pacific Exploratory Mission (PEM) -Tropics B mission. Ambient CH2O was collected in aqueous media and quantified using an enzyme-derivatization fluorescence technique. Primary calibration was performed using aqueous standards and known flow rates. Occasionally, CH2O gas standard additions to ambient air were performed as a secondary calibration. Analytical blanks were determined by replacing ambient air with pure air. The estimated precision was ±30 pptv and the estimated accuracy was the sum of ±30 parts per trillion by volume (pptv) ±15% of the measured value. Approximately 25% of the observations were less than the instrumental detection limit of 50 pptv, and 85% of these occurred above 6 km. CH2O mixing ratios decreased with altitude; for example, near the equator the median value in the lowest 2 km was 275 pptv, decreased to 150 pptv by 6 km and was below 100 pptv above 8 km. Between 130 and 170 W and below 1km, a small variation of CH2O mixing ratio with latitude was noted as near-surface median mixing ratios decreased near the equator (275 pptv) and were greater on either side (375 pptv). A marked decrease in near-surface CH2O (200 pptv) was noted south of 23° S on two flights. Between 3° and 23° S, median CH2O mixing ratios were lower in the eastern tropical Pacific than in the western or central Pacific; nominal differences were >100 pptv near the surface to ∼100 pptv at midaltitude to ∼50 pptv at high altitude. Off the coast of Central America and Mexico, mixing ratios as high as 1200 pptv were observed in plumes that originated to the east over land. CH2O observations were consistently higher than the results from a point model constrained by other photochemical species and meteorological parameters. Regardless of latitude or longitude, agreement was best at altitudes above 4 km where the difference between measured and modeled CH2O medians was less than 50 pptv. Below 2 km the model median was approximately 150 pptv less than the measured median. Copyright 2001 by the American Geophysical Union

    No well-defined remnant Fermi surface in Sr2CuO2Cl2

    Get PDF
    In angle-resolved photoelectron spectra of the antiferromagnetic insulators Ca2CuO2Cl2 and Sr2CuO2Cl2 a sharp drop of the spectral intensity of the lowest-lying band is observed along a line in k space equivalent to the Fermi surface of the optimally doped high-temperature superconductors. This was interpreted as a signature of the existence of a remnant Fermi surface in the insulating phase of the high-temperature superconductors. In this paper it is shown that the drop of the spectral intensity is not related to the spectral function but is a consequence of the electron-photon matrix elementComment: 4 pages, 3 figure

    Political participation: the vocational motivations of Labour party employees

    Get PDF
    Party employees are an under-researched group in political science. This article begins to address this oversight by examining Labour Party employees using new quantitative and qualitative data. It argues that party employment should be regarded as a form of political participation and as a consequence, existing models of political participation can be utilised to help explain why people work for political parties. After testing these propositions, the article concludes that existing models are indeed helpful in explaining the motivations for party employment

    Asperity Shape and Gradient Elasticity in Flexoelectric/Triboelectric Contacts

    Full text link
    The underlying mechanisms responsible for triboelectricity have yet to be completely understood. We have previously proposed a model which explains charge transfer in non-metals via band bending due to electromechanical, especially flexoelectric, effects at deformed asperities coupled with work function differences. Here, we investigate whether the shape of asperities is important for triboelectricity. The results indicate that the shape is important in general, since how the electromechanical response scales with force and asperity size depends on the shape. This is qualitatively in agreement with experimental results. Further, we discuss how the impact of the shape depends on material, geometric, and electronic transport details. Additionally, gradient elasticity is incorporated into the model. As asperity contact is a nanoscale phenomenon, size-dependent mechanics can become significant and give more physically reasonable results. In some cases, the impact of gradient elasticity terms on the electromechanical potentials is very large, indicating that standard elasticity theory is not enough to cover some relevant cases in modelling triboelectricity.Comment: 21 pages, 11 figure
    • …
    corecore