7 research outputs found

    Check on the features of potted 20-inch PMTs with 1F3 electronics prototype at Pan-Asia

    Full text link
    The Jiangmen underground neutrino observatory (JUNO) is a neutrino project with a 20-kton liquid scintillator detector located at 700-m underground. The large 20-inch PMTs are one of the crucial components of the JUNO experiment aiming to precision neutrino measurements with better than 3% energy resolution at 1 MeV. The excellent energy resolution and a large fiducial volume provide many exciting opportunities for addressing important topics in neutrino and astro-particle physics. With the container #D at JUNO Pan-Asia PMT testing and potting station, the features of waterproof potted 20-inch PMTs were measured with JUNO 1F3 electronics prototype in waveform and charge, which are valuable for better understanding on the performance of the waterproof potted PMTs and the JUNO 1F3 electronics. In this paper, basic features of JUNO 1F3 electronics prototype run at Pan-Asia will be introduced, followed by an analysis of the waterproof potted 20-inch PMTs and a comparison with the results from commercial electronics used by the container #A and #B

    ATLAS

    No full text
    % ATLAS \\ \\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and Bs0 B ^0 _{s} -mixing. \\ \\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial field, electromagnetic and hadronic calorimeters outside the solenoid and in the forward regions, and barrel and end-cap air-core-toroid muon spectrometers. The precision measurements for photons, electrons, muons and hadrons, and identification of photons, electrons, muons, τ\tau-leptons and b-quark jets are performed over ∣η∣| \eta | < 2.5. The complete hadronic energy measurement extends over ∣η∣| \eta | < 4.7. \\ \\The inner tracking detector consists of straw drift tubes interleaved with transition radiators for robust pattern recognition and electron identification, and several layers of semiconductor strip and pixel detectors providing high-precision space points. \\ \\The e.m. calorimeter is a lead-Liquid Argon sampling calorimeter with an integrated preshower detector and a presampler layer immediately behind the cryostat wall for energy recovery. The end-cap hadronic calorimeters also use Liquid Argon technology, with copper absorber plates. The end-cap cryostats house the e.m., hadronic and forward calorimeters (tungsten-Liquid Argon sampling). The barrel hadronic calorimeter is an iron-scintillating tile sampling calorimeter with longitudinal tile geometry. \\ \\Air-core toroids are used for the muon spectrometer. Eight superconducting coils with warm voussoirs are used in the barrel region complemented with superconducting end-cap toroids in the forward regions. The toroids will be instrumented with Monitored Drift Tubes (Cathode Strip Chambers at large rapidity where there are high radiation levels). The muon trigger and second coordinate measurement for muon tracks are provide

    Mass testing and characterization of 20-inch PMTs for JUNO

    No full text

    JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo

    Get PDF
    International audienceWe discuss JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo via detecting inverse beta decay reactions of electron anti-neutrinos resulting from the annihilation. We study possible backgrounds to the signature, including the reactor neutrinos, diffuse supernova neutrino background, charged- and neutral-current interactions of atmospheric neutrinos, backgrounds from muon-induced fast neutrons and cosmogenic isotopes. A fiducial volume cut, as well as the pulse shape discrimination and the muon veto are applied to suppress the above backgrounds. It is shown that JUNO sensitivity to the thermally averaged dark matter annihilation rate in 10 years of exposure would be significantly better than the present-day best limit set by Super-Kamiokande and would be comparable to that expected by Hyper-Kamiokande

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Neutrino physics with JUNO

    No full text
    corecore