653 research outputs found

    Individualised perioperative blood pressure and fluid therapy in oesophagectomy:study protocol for a randomised clinical trial

    Get PDF
    INTRODUCTION: Oesophagectomy is the mainstay of curative treatment for oesophageal cancer, but it is associated with a high risk of major complications. Goal-directed fluid therapy and individualised blood pressure management may prevent complications after surgery. Extending goal-directed fluid therapy after surgery and applying an individual blood pressure target may have substantial benefit in oesophagectomy. This is a protocol for a clinical trial implementing a novel haemodynamic protocol from the start of anaesthesia to the next day with the patient’s own night-time blood pressure as the lower threshold.METHODS: This is a single-centre, single-blind, randomised, clinical trial. Oesophagectomy patients are randomised 1:1 for either perioperative haemodynamic management according to a goal-directed fluid therapy protocol with an individual target blood pressure or for standard care. The primary endpoint is the total burden of morbidity and mortality assessed by the Comprehensive Complication Index 30 days after surgery. Secondary endpoints are complications, reoperations, fluid and vasopressor dosage and quality of life at 90 days after surgery.CONCLUSIONS: The results from this trial provide an objective and easy-to-follow algorithm for fluid administration, which may improve patient-centred outcomes in oesophagectomy patients.</p

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
    corecore