25,624 research outputs found
Single-particle levitation system for automated study of homogeneous solute nucleation
We present an instrument that addresses two critical requirements for quantitative measurements of the homogeneous crystal nucleation rate in supersaturated aqueous solution. First, the need to perform repeated measurements of nucleation incubation times is met by automating experiments to enable programmable cycling of thermodynamic conditions. Second, the need for precise and robust control of the chemical potential in supersaturated aqueous solution is met by implementing a novel technique for regulating relative humidity. The apparatus levitates and weighs micron-sized samples in an electric field, providing access to highly supersaturated states. We report repeated observations of the crystal nucleation incubation time in a supersaturated aqueous sodium chloride droplet, from which we infer the nucleation rate
Urban environmental health applications of remote sensing
An urban area was studied through the use of the inventory-by-surrogate method rather than by direct interpretation of photographic imagery. Prior uses of remote sensing in urban and public research are examined. The effects of crowding, poor housing conditions, air pollution, and street conditions on public health are considered. Color infrared photography was used to categorize land use features and the grid method was used in photo interpretation analysis. The incidence of shigella and salmonella, hepatitis, meningitis, tuberculosis, myocardial infarction and veneral disease were studied, together with mortality and morbidity rates. Sample census data were randomly collected and validated. The hypothesis that land use and residential quality are associated with and act as an influence upon health and physical well-being was studied and confirmed
Urban environmental health applications of remote sensing, summary report
Health and its association with the physical environment was studied based on the hypothesis that there is a relationship between the man-made physical environment and health status of a population. The statistical technique of regression analysis was employed to show the degree of association and aspects of physical environment which accounted for the greater variation in health status. Mortality, venereal disease, tuberculosis, hepatitis, meningitis, shigella/salmonella, hypertension and cardiac arrest/myocardial infarction were examined. The statistical techniques were used to measure association and variation, not necessarily cause and effect. Conclusions drawn show that the association still exists in the decade of the 1970's and that it can be successfully monitored with the methodology of remote sensing
Spectroscopic Observations of Optically Selected Clusters of Galaxies from the Palomar Distant Cluster Survey
We have conducted a redshift survey of sixteen cluster candidates from the
Palomar Distant Cluster Survey (PDCS) to determine both the density of PDCS
clusters and the accuracy of the estimated redshifts presented in the PDCS
catalog (Postman et. al. 1996). We find that the matched-filter redshift
estimate presented in the PDCS has an error sigma_z = 0.06 in the redshift
range 0.1 < z < 0.35 based on eight cluster candidates with three or more
concordant galaxy redshifts.
We measure the low redshift (0.1 < z < 0.35) space density of PDCS clusters
to be 31.3^{+30.5}_{-17.1} * E-06 h^3 Mpc^-3 (68% confidence limits for a
Poisson distribution) for Richness Class 1 systems. We find a tentative space
density of 10.4^{+23.4}_{-8.4}* E-06 h^3 Mpc^-3 for Richness Class 2 clusters.
These densities compare favorably with those found for the whole of the PDCS
and support the finding that the space density of clusters in the PDCS is a
factor of ~5 above that of clusters in the Abell catalog (Abell 1958; Abell,
Corwin, and Olowin 1989). These new space density measurements were derived as
independently as possible from the original PDCS analysis and therefore,
demonstrate the robustness of the original work. Based on our survey, we
conclude that the PDCS matched-filter algorithm is successful in detecting real
clusters and in estimating their true redshifts in the redshift range we
surveyed.Comment: 23 pages with 4 figures and 3 seperate tables. To be published in the
November Issue of the Astronomical Journa
The labor market regimes of Denmark and Norway – one Nordic model?
The literature on the Danish and Norwegian labor market systems emphasizes the commonalities of the two systems. We challenge this perception by investigating how employers in multinational companies in Denmark and Norway communicate with employees on staffing changes. We argue that the development of ‘flexicurity’ in Denmark grants Danish employers considerably greater latitude in engaging in staffing changes than its Nordic counterpart, Norway. Institutional theory leads us to suppose that large firms located in the Danish setting will be less likely to engage in employer–employee communication on staffing plans than their Norwegian counterparts. In addition, we argue that in the Danish context indigenous firms will have a better insight into the normative and cognitive aspects to flexicurity than foreign-owned firms, meaning that they are more likely to engage in institutional entrepreneurialism than their foreign owned counterparts. We supplement institutional theory with an actor perspective in order to take into account the role of labor unions. Our analysis is based on a survey of 203 firms in Norway and Denmark which are either indigenous multinational companies or the subsidiaries of foreign multinational companies. The differences we observe cause us to conclude that the notion of a common Nordic model is problematic
Asynchronous displays for multi-UV search tasks
Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc
Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy
We report dynamical shear-modulus measurements for five glass-forming liquids
(pentaphenyl trimethyl trisiloxane, diethyl phthalate, dibutyl phthalate,
1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained
by the piezoelectric shear-modulus gauge (PSG) method. This technique allows
one to measure the shear modulus ( Pa) of the liquid within a
frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent
response functions to investigate whether time-temperature superposition (TTS)
is obeyed. We also study the shear-modulus loss-peak position and its
high-frequency part. It has been suggested that when TTS applies, the
high-frequency side of the imaginary part of the dielectric response decreases
like a power law of the frequency with an exponent -1/2. This conjecture is
analyzed on the basis of the shear mechanical data. We find that TTS is obeyed
for pentaphenyl trimethyl trisiloxane and in 1,2-propanediol while in the
remaining liquids evidence of a mechanical process is found. Although
the the high-frequency power law behavior of the shear-loss
may approach a limiting value of when lowering the temperature, we
find that the exponent lies systematically above this value (around 0.4). For
the two liquids without beta relaxation (pentaphenyl trimethyl trisiloxane and
1,2-propanediol) we also test the shoving model prediction, according to which
the the relaxation-time activation energy is proportional to the instantaneous
shear modulus. We find that the data are well described by this model.Comment: 7 pages, 6 figure
3D-Matched-Filter Galaxy Cluster Finder I: Selection Functions and CFHTLS Deep Clusters
We present an optimised galaxy cluster finder, 3D-Matched-Filter (3D-MF),
which utilises galaxy cluster radial profiles, luminosity functions and
redshift information to detect galaxy clusters in optical surveys. This method
is an improvement over other matched-filter methods, most notably through
implementing redshift slicing of the data to significantly reduce line-of-sight
projections and related false positives. We apply our method to the
Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) Deep fields, finding ~170
galaxy clusters per square degree in the 0.2 <= z <= 1.0 redshift range. Future
surveys such as LSST and JDEM can exploit 3D-MF's automated methodology to
produce complete and reliable galaxy cluster catalogues. We determine the
reliability and accuracy of the statistical approach of our method through a
thorough analysis of mock data from the Millennium Simulation. We detect
clusters with 100% completeness for M_200 >= 3.0x10^(14)M_sun, 88% completeness
for M_200 >= 1.0x10^(14)M_sun, and 72% completeness well into the 10^(13)M_sun
cluster mass range. We show a 36% multiple detection rate for cluster masses >=
1.5x10^(13)M_sun and a 16% false detection rate for galaxy clusters >~
5x10^(13)M_sun, reporting that for clusters with masses <~ 5x10^(13)M_sun false
detections may increase up to ~24%. Utilising these selection functions we
conclude that our galaxy cluster catalogue is the most complete CFHTLS Deep
cluster catalogue to date.Comment: 18 pages, 17 figures, 5 tables; v2: added Fig 5, minor edits to match
version published in MNRA
Automatic Detection of Seizures with Applications
There are an estimated two million people with epilepsy in the United States. Many of these people do not respond to anti-epileptic drug therapy. Two devices can be developed to assist in the treatment of epilepsy. The first is a microcomputer-based system designed to process massive amounts of electroencephalogram (EEG) data collected during long-term monitoring of patients for the purpose of diagnosing seizures, assessing the effectiveness of medical therapy, or selecting patients for epilepsy surgery. Such a device would select and display important EEG events. Currently many such events are missed. A second device could be implanted and would detect seizures and initiate therapy. Both of these devices require a reliable seizure detection algorithm. A new algorithm is described. It is believed to represent an improvement over existing seizure detection algorithms because better signal features were selected and better standardization methods were used
GaAs solar cells for laser power beaming
Efforts to develop GaAs solar cells for coupling to laser beams in the wavelength range of 800 to 840 nm are described. This work was motivated primarily by interests in space-tp-space power beaming applications. In particular, the Battelle Pacific Northwest Laboratories is conducting studies of the utilization of power beaming for several future space missions. Modeling calculations of GaAs cell performance were carried out using PC-1D to determine an appropriate design for a p/n cell structure. Epitaxial wafers were grown by MOCVD and cells fabricated at WSU Tri-Cities. Under simulated conditions, an efficiency of 53 percent was achieved for a cell coupled to 806 nm light at 400 mW/sq cm
- …