42 research outputs found

    Sensitivity of Ru(bpy)_2dppz^(2+) Luminescence to DNA Defects

    Get PDF
    The luminescent characteristics of Ru(bpy)_2dppz^(2+) (dppz = dipyrido[3,2-a:2′,3′-c]phenazine), a DNA light switch, were investigated in the presence of oligonucleotides containing single base mismatches or an abasic site. In water, the ruthenium luminescence is quenched, but, bound to well matched duplex DNA, the Ru complex luminesces. Here we show that with DNAs containing a defect, rac-, Δ-, and Λ-Ru(bpy)_2dppz^(2+) exhibit significant luminescent enhancements above that with well matched DNA. In the presence of a single base mismatch, large luminescent enhancements are evident for the Δ-Ru isomer; the Λ-isomer shows particularly high luminescence bound to an oligonucleotide containing an abasic site. Similar increases are not evident with two common DNA-binding organic fluorophores, ethidium bromide and TO-PRO-3. Titrations with hairpin oligonucleotides containing a variable mismatch site show correlation between the level of luminescent enhancement and the thermodynamic destabilization associated with the mismatch. This correlation is reminiscent of that found earlier for a bulky rhodium complex that binds mismatched DNA sites through metalloinsertion, where the complex binds the DNA from the minor groove side, ejecting the mismatched bases into the major groove. Differential quenching studies with minor and major groove quenchers and time-resolved emission studies support this metalloinsertion mode for the dppz complex at the defect site. Certainly these data underscore the utility of Ru(bpy)_2dppz^(2+) as a sensitive luminescent reporter of DNA and its defects

    Near-Field Scanning Optical Microscope Combined with Digital Holography for Three-Dimensional Electromagnetic Field Reconstruction

    Get PDF
    International audienceNear-field scanning optical microscopy (NSOM) has proven to be a very powerful imaging technique that allows overcoming the diffraction limit and obtaining information on a scale much smaller than what can be achieved by classical optical imaging techniques. This is achieved using nanosized probes that are placed in close proximity to the sample surface, and thus allow the detection of evanescent waves that contain important information about the properties of the sample on a subwavelength scale. In particular, some aperture-based probes use a nanometer-sized hole to locally illuminate the sample. The far-field radiation of such probes is essential to their imaging properties, but cannot be easily estimated since it highly depends on the environment with which it interacts. In this chapter, we tackle this problem by introducing a microscopy method based on full-field off-axis digital holography that allows us to study in details the three-dimensional electromagnetic field scattered by a NSOM probe in different environments. We start by describing the NSOM and holography techniques independently, and continue by highlighting the advantage of combining both methods. We present a comparative study of the reconstructed light from a NSOM tip located in free space or coupled to transparent and plasmonic media. While far-field methods, such as back focal plane imaging, can be used to infer the directionality of angular radiation patterns, the advantage of our technique is that a single hologram contains information on both the amplitude and phase of the scattered light, allowing to reverse numerically the propagation of the electromagnetic field towards the source. We also present Finite Difference Time Domain (FDTD) simulations to model the radiation of the NSOM tip as a superposition of a magnetic and an electric dipole. We finally propose some promising applications that could be performed with this combined NSOM-holography technique

    Ultrafast nano-focusing with full optical waveform control

    Full text link
    The spatial confinement and temporal control of an optical excitation on nanometer length scales and femtosecond time scales has been a long-standing challenge in optics. It would provide spectroscopic access to the elementary optical excitations in matter on their natural length and time scales and enable applications from ultrafast nano-opto-electronics to single molecule quantum coherent control. Previous approaches have largely focused on using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides to generate nanometer localized excitations. However, these implementations generally suffer from mode mismatch between the far-field propagating light and the near-field confinement. In addition, the spatial localization in itself may depend on the spectral phase and amplitude of the driving laser pulse thus limiting the degrees of freedom available to independently control the nano-optical waveform. Here we utilize femtosecond broadband SPP coupling, by laterally chirped fan gratings, onto the shaft of a monolithic noble metal tip, leading to adiabatic SPP compression and localization at the tip apex. In combination with spectral pulse shaping with feedback on the intrinsic nonlinear response of the tip apex, we demonstrate the continuous micro- to nano-scale self-similar mode matched transformation of the propagating femtosecond SPP field into a 20 nm spatially and 16 fs temporally confined light pulse at the tip apex. Furthermore, with the essentially wavelength and phase independent 3D focusing mechanism we show the generation of arbitrary optical waveforms nanofocused at the tip. This unique femtosecond nano-torch with high nano-scale power delivery in free space and full spectral and temporal control opens the door for the extension of the powerful nonlinear and ultrafast vibrational and electronic spectroscopies to the nanoscale.Comment: Contains manuscript with 4 figures as well as supplementary material with 2 figure

    A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

    Full text link

    Sensitivity of Ru(bpy)(2)dppz(2+) Luminescence to DNA Defects

    No full text
    The luminescent characteristics of Ru(bpy) 2dppz 2+ (dppz = dipyrido[3,2-a:2???,3???-e]phenazine), a DNA light switch, were investigated in the presence of oligonucleotides containing single base mismatches or an abasic site. In water, the ruthenium luminescence is quenched, but, bound to well matched duplex DNA, the Ru complex luminesces. Here we show that with DNAs containing a defect, rac-, ??-, and ??-Ru(bpy) 2dppz 2+ exhibit significant luminescent enhancements above that with well matched DNA. In the presence of a single base mismatch, large luminescent enhancements are evident for the ??-Ru isomer; the ??-isomer shows particularly high luminescence bound to an oligonucleotide containing an abasic site. Similar increases are not evident with two common DNA-binding organic fluorophores, ethidium bromide and TO-PRO-3. Titrations with hairpin oligonucleotides containing a variable mismatch site show correlation between the level of luminescent enhancement and the thermodynamic destabilization associated with the mismatch. This correlation is reminiscent of that found earlier for a bulky rhodium complex that binds mismatched DNA sites through metalloinsertion, where the complex binds the DNA from the minor groove side, ejecting the mismatched bases into the major groove. Differential quenching studies with minor and major groove quenchers and time-resolved emission studies support this metalloinsertion mode for the dppz complex at the defect site. Certainly these data underscore the utility of Ru(bpy) 2dppz 2+ as a sensitive luminescent reporter of DNA and its defects.close494

    Luminescent Properties of Ruthenium(II) Complexes with Sterically Expansive Ligands Bound to DNA Defects

    No full text
    A new family of ruthenium­(II) complexes with sterically expansive ligands for targeting DNA defects was prepared, and their luminescent responses to base pair mismatches and/or abasic sites were investigated. Design of the complexes sought to combine the mismatch specificity of sterically expansive metalloinsertors, such as [Rh­(bpy)<sub>2</sub>(chrysi)]<sup>3+</sup> (chrysi = chrysene-5,6-quinone diimine), and the light switch behavior of [Ru­(bpy)<sub>2</sub>(dppz)]<sup>2+</sup> (dppz = dipyrido­[3,2-<i>a</i>:2′,3′-<i>c</i>]­phenazine). In one approach, complexes bearing analogues of chrysi incorporating hydrogen-bonding functionality similar to dppz were synthesized. While the complexes show luminescence only at low temperatures (77 K), competition experiments with [Ru­(bpy)<sub>2</sub>(dppz)]<sup>2+</sup> at ambient temperatures reveal that the chrysi derivatives preferentially bind DNA mismatches. In another approach, various substituents were introduced onto the dppz ligand to increase its steric bulk for mismatch binding while maintaining planarity. Steady state luminescence and luminescence lifetime measurements reveal that these dppz derivative complexes behave as DNA “light switches” but that the selectivity in binding and luminescence with mismatched/abasic versus well-matched DNA is not high. In all cases, luminescence depends sensitively upon structural perturbations to the dppz ligand

    Simultaneous measurement of nanoscale electric and magnetic optical fields

    Get PDF
    Control of light–matter interactions at the nanoscale has advanced fields such as quantum optics1, photovoltaics2 and telecommunications3. These advances are driven by an improved understanding of the nanoscale behaviour of light, enabled by direct observations of the local electric fields near photonic nanostructures4, 5, 6. With the advent of metamaterials that respond to the magnetic component of light7, 8, schemes have been developed to measure the nanoscale magnetic field9, 10, 11, 12. However, these structures interact not only with the magnetic field, but also with the electric field of light. Here, we demonstrate the essential simultaneous detection of both electric and magnetic fields with subwavelength resolution. By explaining our measurements through reciprocal considerations, we create a route towards designing probes sensitive to specific desired combinations of electric and magnetic field components. Simultaneous access to nanoscale electric and magnetic fields will pave the way for new designs of optical nanostructures and metamaterials
    corecore