1,353 research outputs found

    Titanium versus absorbable tacks comparative study (TACS): a multicenter, non-inferiority prospective evaluation during laparoscopic repair of ventral and incisional hernia: study protocol for randomized controlled trial

    Get PDF
    BACKGROUND: Laparoscopic repair of ventral and incisional hernias has gained popularity since many studies have reported encouraging results in terms of outcomee and recurrence. Choice of mesh and fixation methods are considered crucial issues in preventing recurrences and complications. Lightweight meshes are considered the first choice due to their biomechanical properties and the ability to integrate into the abdominal wall. Titanium helicoidal tacks still represent the "gold standard" for mesh fixation, even if they have been suggested to be involved in the genesis of post-operative pain and complications. Recently, absorbable tacks have been introduced, under the hypothesis that there will be no need to maintain a permanent fixation device after mesh integration. Nevertheless, there is no evidence that absorbable tacks may guarantee the same results as titanium tacks in terms of strength of fixation and recurrence rates. The primary end point of the present trial is to test the hypothesis that absorbable tacks are non-inferior to titanium tacks in laparoscopic incisional and ventral hernia repair (LIVHR) by lightweight polypropylene mesh, in terms of recurrence rates at 3-year follow-up. Surgical complications, post-operative stay, comfort and pain are secondary end points to be assessed. METHODS/DESIGN: Two hundred and twenty patients with ventral hernia will be randomized into 2 groups: Group A (110) patients will be submitted to LIVHR by lightweight polypropylene mesh fixed by titanium tacks; Group B (110) patients will be submitted to LIVHR by lightweight polypropylene mesh fixed by absorbable tacks. DISCUSSION: A few retrospective studies have reported similar results when comparing absorbable versus non-absorbable tacks in terms of intraoperative and early post-operative outcomes. These studies have the pitfalls to be retrospective evaluation of small series of patients, and the reported results still need to be validated by larger series and prospective studies. The aim of the present trial is to investigate and test the non-inferiority of absorbable versus non-absorbable tacks in terms of hernia recurrence rates, in order to assess whether the use of absorbable tacks may achieve the same results as non-absorbable tacks in mid-term and long-term settings

    Description of Bocchus irwini sp. nov. from Madagascar (Hymenoptera Dryinidae)

    Get PDF
    Bocchus irwini sp. nov. is described from a male collected in Analagnambe forest, Mahajanga Province, Madagascar. The new species is similar to Bocchus watshami Olmi 1987. Keys to the Afrotropical species of Bocchus are modified to include the new species

    Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Get PDF
    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ~10^46 erg are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ~10^15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3-D MHD simulations of relativistic pulsar winds and their associated nebulae.Comment: EPS 44th Conference on Plasma Physics (June 2017, Belfast), paper accepted for publication on Plasma Physics and Controlled Fusio

    Collective oscillations in disordered neural networks

    Get PDF
    We investigate the onset of collective oscillations in a network of pulse-coupled leaky-integrate-and-fire neurons in the presence of quenched and annealed disorder. We find that the disorder induces a weak form of chaos that is analogous to that arising in the Kuramoto model for a finite number N of oscillators [O.V. Popovych at al., Phys. Rev. E 71} 065201(R) (2005)]. In fact, the maximum Lyapunov exponent turns out to scale to zero for N going to infinite, with an exponent that is different for the two types of disorder. In the thermodynamic limit, the random-network dynamics reduces to that of a fully homogenous system with a suitably scaled coupling strength. Moreover, we show that the Lyapunov spectrum of the periodically collective state scales to zero as 1/N^2, analogously to the scaling found for the `splay state'.Comment: 8.5 Pages, 12 figures, submitted to Physical Review

    Energy and angular momentum sharing in dissipative collisions

    Full text link
    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using the information from both the heavy fragments and the light charged particles. The ratio of Hydrogen and Helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.Comment: 21 pages, 20 figures. Submitted to European Physics Journal

    Dynamics of fully coupled rotators with unimodal and bimodal frequency distribution

    Full text link
    We analyze the synchronization transition of a globally coupled network of N phase oscillators with inertia (rotators) whose natural frequencies are unimodally or bimodally distributed. In the unimodal case, the system exhibits a discontinuous hysteretic transition from an incoherent to a partially synchronized (PS) state. For sufficiently large inertia, the system reveals the coexistence of a PS state and of a standing wave (SW) solution. In the bimodal case, the hysteretic synchronization transition involves several states. Namely, the system becomes coherent passing through traveling waves (TWs), SWs and finally arriving to a PS regime. The transition to the PS state from the SW occurs always at the same coupling, independently of the system size, while its value increases linearly with the inertia. On the other hand the critical coupling required to observe TWs and SWs increases with N suggesting that in the thermodynamic limit the transition from incoherence to PS will occur without any intermediate states. Finally a linear stability analysis reveals that the system is hysteretic not only at the level of macroscopic indicators, but also microscopically as verified by measuring the maximal Lyapunov exponent.Comment: 22 pages, 11 figures, contribution for the book: Control of Self-Organizing Nonlinear Systems, Springer Series in Energetics, eds E. Schoell, S.H.L. Klapp, P. Hoeve

    The robustness of carbon fibre members bonded to aluminium connectors in aerial delivery systems

    Get PDF
    In this paper a framework for robust design solution of an adhesively bonded joint between a composite material and an aluminum connector is developed. To this end, an approach has been developed to automate the process of robust design by linking Ansys workbench and an in-house MATLAB code. The model employed in this study investigated the possibility of joining composite materials to aluminum components which is a problematic process in terms of preparation, implementation, etc. Before designing such a join, it is necessary to fully understand the behaviour of the proposed aluminum connector with the carbon fibre member. To achieve this, the investigation of the adhesive layer’s behaviour and the uncertainties involved in such structures was identified. The behaviour of the adhesive between the carbon fibre composite and the aluminum connector was modelled based on the assumption that this layer acts as a “spring system” within a “cohesive” zone. Initially, the properties of Permabond ET5428 BLACK adhesive were used for validating the finite element model using the obtained test data. A robust design method is then employed to identify the right adhesive for the joint which not only maximizes the debonding force and sliding distance but is also robust with respect to the variation in its mechanical properties. A wide range of adhesive properties have been employed and a robust design technique based on uncertainty analysis is proposed

    Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies

    Get PDF
    A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision and mass of the system. The data have been collected with the "Fiasco" setup in the reactions 93Nb+93Nb at 17, 23, 30, 38AMeV and 116Sn+116Sn at 30, 38AMeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code Gemini at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences for what concerns both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.Comment: 18 pages, 17 figures, Revtex
    corecore