247 research outputs found

    Status and Dietary Intake of Phytoene and Phytofluene in Spanish Adults and the Effect of a Four-Week Dietary Intervention with Lutein-Rich Fruits or Vegetables.

    Get PDF
    Phytoene (PT) and phytofluene (PTF) are colourless carotenoids presents in the human diet and in blood, faeces and tissues and are biologically active. However, there is very little data on these carotenoids. This study aims to assess PT and PTF concentrations in serum from healthy Spanish normolipemic subjects (n = 101, 45–65 years) and the effect of a fruit and vegetable dietary intervention (4 weeks, n = 29) on PT and PTF concentration in serum and faeces and dietary intake. Serum and faecal concentrations were analysed by HPLC and dietary intake by 3 × 24 h recalls. PT showed higher concentrations than PTF in serum, faeces and in the dietary intake. Considering both studies, PT and PTF concentrations in serum were 0.16 ± 0.07 and 0.05 ± 0.04 µmol/L, respectively, in faeces 17.7 ± 20.3 and 6.5 ± 7.9 µg/g, respectively, and in dietary intake the median was 2.4 and 0.6 mg/p/day, respectively. Carrots and tomatoes were the major dietary contributors of these carotenoids. The dietary intervention did not cause significant variations in the PT and PTF intake or serum concentrations, but a lower concentration in faeces was observed for the fruit group (PT: p = 0.024; PTF isomer-3: p = 0.034). These data highlight the need for further research on the activities of these carotenoids in humanspost-print1648 K

    Dietary β-Cryptoxanthin and α-Carotene Have Greater Apparent Bioavailability Than β-Carotene in Subjects from Countries with Different Dietary Patterns.

    Get PDF
    β-carotene, α-carotene and β-cryptoxanthin are greater contributors to vitamin A intake than retinol in the human diet for most people around the world. Their contribution depends on several factors, including bioavailability and capacity of conversion into retinol. There is an increasing body of research showing that the use of retinol activity equivalents or retinol equivalents could lead to the underestimation of the contribution of β-cryptoxanthin and of α-carotene. The aim is to assess their apparent bioavailability by comparing concentrations in blood to their dietary intakes and identifying the major food contributors to their dietary intake. Dietary intake (3-day 24-h records) and serum concentrations (by HPLC) were calculated in normolipemic subjects with adequate retinol status (≥1.1 µmol/L) from our studies (n = 633) and apparent bioavailability calculated from 22 other studies (n = 29,700). Apparent bioavailability was calculated as the ratio of concentration in the blood to carotenoid intake. Apparent bioavailabilities for α-carotene and β-cryptoxanthin were compared to those for β-carotene. Eating comparable amounts of α-carotene, β-cryptoxanthin and β-carotene foods resulted in 55% greater α-carotene (95% CI 35, 90) and 686% higher β-cryptoxanthin (95% CI 556, 1016) concentrations than β-carotene in blood. This suggests differences in the apparent bioavailability of α-carotene and β-cryptoxanthin and even larger differences with β-cryptoxanthin, greater than that of β-carotene. Four fruits (tomato, orange, tangerine, red pepper) and two vegetables (carrot, spinach) are the main contributors to their dietary intake (>50%) in Europeans.post-print579 K

    Predictors of macular pigment and contrast threshold in Spanish healthy normolipemic subjects (45–65 years) with habitual food intake.

    Get PDF
    Introduction The dietary carotenoids lutein (L) and zeaxanthin (Z) are transported in the bloodstream by lipoproteins, sequestered by adipose tissue, and eventually captured in the retina where they constitute macular pigment. There are no L&Z dietary intake recommendations nor desired blood/tissue concentrations for the Spanish general population. Our aim was to assess the correlation of L&Z habitual dietary intake (excluding food supplements), resulting serum concentrations and lipid profile with macular pigment optical density (MPOD) as well as the contrast sensitivity (CT), as visual outcome in normolipemic subjects (n = 101) aged 45–65. Methods MPOD was measured by heterochromatic flicker photometry, serum L&Z by HPLC, the dietary intake by a 3-day food records and CT using the CGT-1000-Contrast-Glaretester at six stimulus sizes, with and without glare. Results Lutein and zeaxanthin concentrations (median) in serum: 0.361 and 0.078 μmol/L, in dietary intake: 1.1 mg L+Z/day. MPOD: 0.34du. L+Z intake correlates with their serum concentrations (rho = 0.333, p = 0.001), which in turn correlates with MPOD (rho = 0.229, p = 0.000) and with fruit and vegetable consumption (rho = 0.202, p = 0.001), but not with lutein+zeaxanthin dietary intake. MPOD correlated with CT, with and without glare (rho ranges: -0.135, 0.160 and -0.121, –0.205, respectively). MPOD predictors: serum L+Z, L+Z/HDL-cholesterol (β-coeficient: -0.91±0.2, 95%CI: -1.3,-0.5) and HDL-cholesterol (R2 = 15.9%). CT predictors: MPOD, mainly at medium and smaller visual angles (corresponding to spatial frequencies for which sensitivity declines with age) and gender (β-coefficients ranges: -0.95,-0.39 and -0.13,-0.39, respectively). Conclusion A higher MPOD is associated with a lower ratio of L+Z/HDL-cholesterol and with a lower CT (higher contrast sensitivity). The HDL-cholesterol would also act indirectly on the CT improving the visual function.post-print1201 K

    Assessment of Food Sources and the Intake of the Colourless Carotenoids Phytoene and Phytofluene in Spain.

    Get PDF
    Phytoene (PT) and phytofluene (PTF), colorless carotenoids, have largely been ignored in food science studies, food technology, and nutrition. However, they are present in commonly consumed foods and may have health-promotion effects and possible uses as cosmetics. The goal of this study is to assess the most important food sources of PT and PTF and their dietary intakes in a representative sample of the adult Spanish population. A total of 62 food samples were analyzed (58 fruit and vegetables; seven items with different varieties/color) and carotenoid data of four foods (three fruits and one processed food) were compiled. PT concentration was higher than that of PTF in all the foods analyzed. The highest PT content was found in carrot, apricot, commercial tomato juice, and orange (7.3, 2.8, 2.0, and 1.1 mg/100 g, respectively). The highest PTF level was detected in carrots, commercial tomato sauce and canned tomato, apricot, and orange juice (1.7, 1.2, 1.0, 0.6, and 0.04 mg/100 g, respectively). The daily intakes of PT and PTF were 1.89 and 0.47 mg/person/day, respectively. The major contributors to the dietary intake of PT (98%) and PTF (73%) were: carrot, tomato, orange/orange juice, apricot, and watermelon. PT and PTF are mainly supplied by vegetables (81% and 69%, respectively). Considering the color of the edible part of the foods analyzed (fruit, vegetables, sauces, and beverages), the major contributor to the daily intake of PT and PTF (about 98%) were of red/orange color.post-print1287 K

    In vitro and in vivo effects of lutein against cisplatin-induced ototoxicity

    Full text link
    This is peer reviewed version of the following article Experimental and Toxicologic Pathology 68.4 (2016): 197-204, which has been published in final form at http://dx.doi.org/10.1016/j.etp.2016.01.003Introduction: Cisplatin is a commonly prescribed drug that produces ototoxicity as a side effect. Lutein is a carotenoid with antioxidant and anti-inflammatory properties previously tested for eye, heart and skin diseases but not evaluated to date in ear diseases. Aim: To evaluate the protective effects of lutein on HEI-OC1 auditory cell line and in a Wistar rat model of cisplatin ototoxicity. Materials and Methods: In vitro study: Culture HEI-OC1 cells were exposed to lutein (2.5-100 μM) and to 25 μM cisplatin for 24 h. In vivo study: Twenty eight female Wistar rats were randomized into three groups. Group A (n = 8) received intratympanic lutein (0.03 mL) (1 mg/mL) in the right ear and saline solution in the left one to determine the toxicity of lutein. Group B (n = 8) received also intraperitoneal cisplatin (10 mg/kg) to test the efficacy of lutein against cisplatin ototoxicity. Group C (n = 12) received intratympanic lutein (0.03 mL) (1 mg/mL) to quantify lutein in cochlear fluids (30 min, 1 h and 5 days after treatment). Hearing function was evaluated by means of Auditory Steady-State Responses before the procedure and 5 days after (groups A and B). Morphological changes were studied by confocal laser scanning microscopy. Results: In vitro study: Lutein significantly reduced the cisplatin-induced cytotoxicity in the HEI-OC1 cells when they were pre-treated with lutein concentrations of 60 and 80 μM. In vivo study: Intratympanic lutein (1 mg/mL) application showed no ototoxic effects. However it did not achieve protective effect against cisplatin-induced ototoxicity in Wistar rats. Conclusions: Although lutein has shown beneficial effects in other pathologies, the present study only obtained protection against cisplatin ototoxicity in culture cells, but not in the in vivo model. The large molecule size, the low dose administered, and restriction to diffusion in the inner ear could account for this negative result.Research supported by a Spanish FIS Grant EI 11/00742

    Evaluation of the potential of total proanthocyanidin content in feces as an intake biomarker.

    Get PDF
    Due to the health benefits associated with proanthocyanidins (PAs), it is useful to identify dietary PA biomarkers that can be determined by simple methods. Since increased levels of circulating PA metabolites are associated with increased fecal PA content, this study explores the spectrophotometric measurement of fecal PA content and its use as a biomarker of PA intake. To this end, fecal PA content was measured using an adaptation of Porter’s spectrophotometric method in samples from a preclinical study and an observational study. In the former, excretion of 250–400 mg PA polymer equivalents/100 g feces was observed during supplementation and the day after, together with a significant association (p < 0.05) between PA intake and the excretion of both intact PAs and some PA metabolites, i.e., (+)-catechin, (−)-epicatechin and syringic acid. No relationship between intake and excretion was found in the observational study, either for the entire group (mean excretion of 240 ± 226 mg PA polymer equivalents/100 g feces) or after stratification into tertiles of consumption. In conclusion, the spectrophotometric determination of total PA content in feces proved to be a valid compliance marker in a preclinical study, but it was not associated with PA intake in free-living subjects. The potential of total PA excretion in observational studies, determined in fecal samples collected the day before dietary recall or in several fecal samples from the same subject, remains to be elucidated, as does a complete validation of the method proposed here.post-print552 K

    Greater bioavailability of xanthophylls compared to carotenes from orange juice (high-pressure processed, pulsed electric field treated, low-temperature pasteurised, and freshly squeezed) in a crossover study in healthy individuals

    Get PDF
    This study examined the effect of the intake of orange juice provided freshly squeezed (FS) or processed using low-temperature pasteurisation (LP), high-pressure processing (HPP), or pulsed electric field (PEF) treatment on the serum carotenoid concentrations of 12 healthy individuals, aged 20–32 years, enrolled in a crossover study. Participants were instructed to consume 500 ml of orange juice/day for 14 days. Carotenoid concentrations in the orange juice as well as serum samples retrieved on days 7 and 14 were analysed via HPLC. A significant increase in serum xanthophyll concentrations, but not serum carotenes, was observed, with the highest increase in α- and β-cryptoxanthin. The processing technologies applied appeared to affect serum carotenoid concentrations, with concentrations being similar in the HPP and FS orange juice types. As high variability in serum carotenoid concentrations was observed, the effect of different technologies on serum carotenoid concentration warrants further studies with larger sample sizes.This work was supported by the Consejeria de Educacion, Comunidad Autonoma de Madrid, Spain (grants: CAM 07G/0040/2000 and 07G/0041/2000) and by the Instituto de Salud Carlos III, Spain (grant RCMN C03/08)

    A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health.

    Get PDF
    Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic bacteria and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits
    corecore