403 research outputs found
Using Open Data to Rapidly Benchmark Biomolecular Simulations : Phospholipid Conformational Dynamics
Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions of biomacromolecules, although it often remains unknown how closely the conformational dynamics correspond to those occurring in real life. Here, we used a large set of open-access MD trajectories of phosphatidylcholine (PC) lipid bilayers to benchmark the conformational dynamics in several contemporary MD models (force fields) against nuclear magnetic resonance (NMR) data available in the literature: effective correlation times and spin-lattice relaxation rates. We found none of the tested MD models to fully reproduce the conformational dynamics. That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber Lipid14, OPLS-based MacRog, and GROMOS-based Berger force fields, whose sampling of the glycerol backbone conformations is too slow. The performance of CHARMM36 persists when cholesterol is added to the bilayer, and when the hydration level is reduced. However, for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids provides the most realistic description because CHARMM36 overestimates the relative weight of similar to 1 ns processes in the headgroup dynamics. We stress that not a single new simulation was run for the present work. This demonstrates the worth of open-access MD trajectory databanks for the indispensable step of any serious MD study: benchmarking the available force fields. We believe this proof of principle will inspire other novel applications of MD trajectory databanks and thus aid in developing biomolecular MD simulations into a true computational microscope-not only for lipid membranes but for all biomacromolecular systems.Peer reviewe
NMR Structure and Dynamics of TonB Investigated by Scar-Less Segmental Isotopic Labeling Using a Salt-Inducible Split Intein
The growing understanding of partially unfolded proteins increasingly points to their biological relevance in allosteric regulation, complex formation, and protein design. However, the structural characterization of disordered proteins remains challenging. NMR methods can access both the dynamics and structures of such proteins, yet suffering from a high degeneracy of NMR signals. Here, we overcame this bottleneck utilizing a salt-inducible split intein to produce segmentally isotope-labeled samples with the native sequence, including the ligation junction. With this technique, we investigated the NMR structure and conformational dynamics of TonB from Helicobacter pylori in the presence of a proline-rich low complexity region. Spin relaxation experiments suggest that the several nano-second time scale dynamics of the C-terminal domain (CTD) is almost independent of the faster pico-to-nanosecond dynamics of the low complexity central region (LCCR). Our results demonstrate the utility of segmental isotopic labeling for proteins with heterogenous dynamics such as TonB and could advance NMR studies of other partially unfolded proteins.Peer reviewe
Apatites in Gale Crater
ChemCam is an active remote sensing instrument suite that has operated successfully on MSL since landing Aug. 6th, 2012. It uses laser pulses to remove dust and to analyze rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The intensities of the emission lines scale with the abundances of the related element. ChemCam is sensitive to most major rock-forming elements as well as to a set of minor and trace elements such as F, Cl, Li, P, Sr, Ba, and Rb. The measured chemical composition can then be used to infer the mineralogical composition of the ablated material. Here, we report a summary of inferred apatite detections along the MSL traverse at Gale Crater. We present the geologic settings of these findings and derive some interpretations about the formation conditions of apatite in time and space
The Convergence of the Hedgehog/Intein Fold in Different Protein Splicing Mechanisms
Protein splicing catalyzed by inteins utilizes many different combinations of amino-acid types at active sites. Inteins have been classified into three classes based on their characteristic sequences. We investigated the structural basis of the protein splicing mechanism of class 3 inteins by determining crystal structures of variants of a class 3 intein from Mycobacterium chimaera and molecular dynamics simulations, which suggested that the class 3 intein utilizes a different splicing mechanism from that of class 1 and 2 inteins. The class 3 intein uses a bond cleavage strategy reminiscent of proteases but share the same Hedgehog/INTein (HINT) fold of other intein classes. Engineering of class 3 inteins from a class 1 intein indicated that a class 3 intein would unlikely evolve directly from a class 1 or 2 intein. The HINT fold appears as structural and functional solution for trans-peptidyl and trans-esterification reactions commonly exploited by diverse mechanisms using different combinations of amino-acid types for the active-site residues
Vibrational Spectra of a Mechanosensitive Channel
We report the simulated vibrational spectra of a mechanosensitive membrane channel in different gating states. Our results show that while linear absorption is insensitive to structural differences, linear dichroism and sum-frequency generation spectroscopies are sensitive to the orientation of the transmembrane helices, which is changing during the opening process. Linear dichroism cannot distinguish an intermediate structure from the closed structure, but sum-frequency generation can. In addition, we find that two-dimensional infrared spectroscopy can be used to distinguish all three investigated gating states of the mechanosensitive membrane channel.
Genome-wide association study of antisocial personality disorder
The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N = 370, N = 5850 for controls, GWAS; N = 173, N = 3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR) = 2.19 (1.53-3.14), P = 1.9 x 10(-5)). Two polymorphisms at 6p21.2 LINC00951-LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR = 1.59 (1.37-1.85), P = 1.6 x 10(-9)) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (beta = 0.68, P = 0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder.Peer reviewe
Pandemic dreams: network analysis of dream content during the COVID-19 lockdown
We used crowdsourcing (CS) to examine how COVID-19 lockdown affects the
content of dreams and nightmares. The CS took place on the 6th week of
the lockdown. Over the course of one week, 4275 respondents (mean age
43, SD=14 years) assessed their sleep and 811 reported their dream
content. Overall, respondents slept substantially more (54.2%) but
reported an average increase of awakenings (28.6%) and nightmares (26%)
from the pre-pandemic situation. We transcribed the content of the
dreams into word lists and performed unsupervised computational network
and cluster analysis of word associations, which suggested 33 dream
clusters including 20 bad dream clusters, of which 55% were pandemic
specific (e.g. Disease Management, Disregard of Distancing, Elderly in
Trouble). The dream association networks were more accentuated for those
who reported an increase in perceived stress. This CS survey on
dream-association networks and pandemic stress introduces novel,
collectively shared COVID-19 bad dream contents.
</p
Potential for increased connectivity between differentiated wolverine populations
Information on genetic population structure provides important knowledge for species conservation. Yet, few studies combine extensive genetic data to evaluate the structure and population dynamics of transboundary populations. Here we used single nucleotide polymorphisms (SNPs), microsatellites and mitochondrial haplotypes to analyze the genetic population structure of wolverines (Gulo gulo) across Fennoscandia using a long-term monitoring dataset of 1708 individuals. Clear population subdivision was detected between the Scandinavian and the eastern Finnish population with a steep cline in the contact zone. While the Scandinavian population showed isolation by distance, large swaths of this population were characterized by high connectivity. Areas with high resistance to gene flow are likely explained by a combination of factors, such as historical isolation and founder effects. From a conservation perspective, promoting gene flow from the population in eastern Finland to the northwest of Scandinavia could augment the less variable Scandinavian population, and increase the demographic resilience of all subpopulations. Overall, the large areas of low resistance to gene flow suggest that transboundary cooperation with aligned actions of harvest and conflict mitigation could improve genetic connectivity across Finland, Sweden, and Norway
- …