204 research outputs found
Polymorphism in the MHC2TA Gene Is Associated with Features of the Metabolic Syndrome and Cardiovascular Mortality
BACKGROUND: Recently, a -168A→G polymorphism in the MHC class II transactivator gene (MHC2TA) was shown to be associated with increased susceptibility to myocardial infarction (MI). AIM: To confirm the association between the MHC2TA -168A→G polymorphism and MI and to study its putative role for microalbuminuria, the metabolic syndrome (MetS) and cardiovascular mortality. MATERIALS AND METHODS: Using an allelic discrimination method we genotyped 11,064 individuals from three study populations: 1) 4,432 individuals from the Botnia type 2 diabetes (T2D) study, 2) 1,222 patients with MI and 2,345 control subjects participating in the Malmö Diet and Cancer study and comprising an MI case-control sample, and 3) 3,065 T2D patients from the Local Swedish Diabetes registry. RESULTS: No association between the -168A→G polymorphism in MHC2TA and MI was observed. However, in the Botnia cohort the AG/GG genotypes were associated with cardiovascular mortality after MI (1.78 [1.09–2.92], p = 0.02). In addition, the AG/GG genotypes were more common in subjects with MetS (40.1% vs. 36.9%, p = 0.03) and in non-diabetic subjects with microalbuminuria (45.4% vs. 36.5%, p = 0.003) compared to control subjects. CONCLUSIONS: A polymorphism in MHC2TA was associated with cardiovascular mortality and predictors of cardiovascular mortality, microalbuminuria and MetS
The Renalase Asp37Glu polymorphism is not associated with hypertension and cardiovascular events in an urban-based prospective cohort: the Malmo Diet and cancer study
Background: Renalase (gene name RNLS), a recently discovered enzyme with monoamine oxidase activity, is implicated in the degradation of catecholamines. Recent studies delineate a possible role of this enzyme in blood pressure (BP) maintenance and cardiac protection and two single nucleotide polymorphisms, RNLS rs2576178 A > G and rs2296545 C > G have been associated with hypertension. The latter SNP leads to a non synonymous Asp to Glu substitution deleting a flavin adenine dinucleotide (FAD) binding site with possible impaired functionality. We tested the hypothesis that these polymorphisms could affect BP levels, hypertension prevalence, and risk of incident cardiovascular events in middle-aged Swedes. Methods: The polymorphisms were genotyped in 5696 participants of the population-based Cardiovascular Cohort of the "Malmo Diet and Cancer" (MDC-CC). The incidence of cardiovascular events (coronary events [n = 408], strokes [n = 330], heart failure [n = 190] and atrial fibrillation/flutter [n = 406]) was monitored for an average of approximately 15 years of follow-up. Results: Both before and after adjustment for sex, age and BMI the polymorphisms did not show any effect on BP level and hypertension prevalence. Before and after adjustment for major cardiovascular risk factors, the hazard ratio for cardiac and cerebrovascular events was not significantly different in carriers of different genotypes. A significant interaction was found between the rs2296545 C > G and age with respect to BP/hypertension. Conclusions: Our data do not support a major role for these RNLS polymorphisms in determining BP level and incident events at population level. The positive interaction with age suggest that the effect of the rs2296545 C > G polymorphism, if any, could vary between different ages
Prediction of Blood Pressure Changes Over Time and Incidence of Hypertension by a Genetic Risk Score in Swedes.
Recent Genome-Wide Association Studies (GWAS) have pinpointed different single nucleotide polymorphisms consistently associated with blood pressure (BP) and hypertension prevalence. However, little data exist regarding single nucleotide polymorphisms predicting BP variation over time and hypertension incidence. The aim of this study was to confirm the association of a genetic risk score (GRS), based on 29 independent single nucleotide polymorphisms, with cross-sectional BP and hypertension prevalence and to challenge its prediction of BP change over time and hypertension incidence in >17 000 middle-aged Swedes participating in a prospective study, the Malmö Preventive Project, investigated at baseline and over a 23-year average period of follow-up. The GRS was associated with higher systolic and diastolic BP values both at baseline (β±SEM, 0.968±0.102 mm Hg and 0.585±0.064 mm Hg; P<1E-19 for both) and at reinvestigation (β±SEM, 1.333±0.161 mm Hg and 0.724±0.086 mm Hg; P<1E-15 for both) and with increased hypertension prevalence (odds ratio [95% CI], 1.192 [1.140-1.245] and 1.144 [1.107-1.183]; P<1E-15 for both). The GRS was positively associated with change (Δ) in BP (β±SEM, 0.033±0.008 mm Hg/y and 0.023±0.004 mm Hg/y; P<1E-04 for both) and hypertension incidence (odds ratio [95% CI], 1.110 [1.065-1.156]; P=6.7 E-07), independently from traditional risk factors. The relative weight of the GRS was lower in magnitude than obesity or prehypertension, but comparable with diabetes mellitus or a positive family history of hypertension. A C-statistics analysis does not show any improvement in the prediction of incident hypertension on top of traditional risk factors. Our data from a large cohort study show that a GRS is independently associated with BP increase and incidence of hypertension
Plasma lipid composition and risk of developing cardiovascular disease.
We tested whether characteristic changes of the plasma lipidome in individuals with comparable total lipids level associate with future cardiovascular disease (CVD) outcome and whether 23 validated gene variants associated with coronary artery disease (CAD) affect CVD associated lipid species
Genetic loci on chromosome 5 are associated with circulating levels of interleukin-5 and eosinophil count in a European population with high risk for cardiovascular disease
IL-5 is a Th2 cytokine which activates eosinophils and is suggested to have an atheroprotective role. Genetic variants in the IL5 locus have been associated with increased risk of CAD and ischemic stroke. In this study we aimed to identify genetic variants associated with IL-5 concentrations and apply a Mendelian randomisation approach to assess IL-5 levels for causal effect on intima-media thickness in a European population at high risk of coronary artery disease. We analysed SNPs within robustly associated candidate loci for immune, inflammatory, metabolic and cardiovascular traits. We identified 2 genetic loci for IL-5 levels (chromosome 5, rs56183820, BETA = 0.11, P = 6.73E−5 and chromosome 14, rs4902762, BETA = 0.12, P = 5.76E−6) and one for eosinophil count (rs72797327, BETA = −0.10, P = 1.41E−6). Both chromosome 5 loci were in the vicinity of the IL5 gene, however the association with IL-5 levels failed to replicate in a meta-analysis of 2 independent cohorts (rs56183820, BETA = 0.04, P = 0.2763, I2 = 24, I2 − P = 0.2516). No significant associations were observed between SNPs associated with IL-5 levels or eosinophil count and IMT measures. Expression quantitative trait analyses indicate effects of the IL-5 and eosinophil-associated SNPs on RAD50 mRNA expression levels (rs12652920 (r2 = 0.93 with rs56183820) BETA = −0.10, P = 8.64E−6 and rs11739623 (r2 = 0.96 with rs72797327) BETA = −0.23, P = 1.74E−29, respectively). Our data do not support a role for IL-5 levels and eosinophil count in intima-media thickness, however SNPs associated with IL-5 and eosinophils might influence stability of the atherosclerotic plaque via modulation of RAD50 levels
Genetic risk prediction of atrial fibrillation
Background—Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke.
Methods—To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from <1x10-3 to <1x10-8 in a prior independent genetic association study.
Results—Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10-4) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10-15). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10-3). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01).
Conclusions—Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms
Novel subgroups of adult-onset diabetes and their association with outcomes : a data-driven cluster analysis of six variables
Background Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis. Methods We did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA(1c), and homoeostatic model assessment 2 estimates of beta-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations. Findings We identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes. Interpretation We stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.Peer reviewe
Orthostatic hypotension and novel blood pressure-associated gene variants: Genetics of Postural Hemodynamics (GPH) Consortium
Aims: Orthostatic hypotension (OH), an independent predictor of mortality and cardiovascular events, strongly correlates with hypertension. Recent genome-wide studies have identified new loci influencing blood pressure (BP) in populations, but their impact on OH remains unknown. Methods and Results: A total of 38 970 men and women of European ancestry from five population-based cohorts were included, of whom 2656 (6.8%) met the diagnostic criteria for OH (systolic/diastolic BP drop ≥20/10 mmHg within 3 min of standing). Thirty-one recently discovered BP-associated single nucleotide polymorphisms (SNPs) were examined using an additive genetic model and the major allele as referent. Relations between OH, orthostatic systolic BP response, and genetic variants were assessed by inverse variance-weighted meta-analysis. We found Bonferroni adjusted (P < 0.0016) significant evidence for association between OH and the EBF1 locus (rs11953630, per-minor-allele odds ratio, 95% confidence interval: 0.90, 0.85–0.96; P = 0.001), and nominal evidence (P < 0.05) for CYP17A1 (rs11191548: 0.85, 0.75–0.95; P = 0.005), and NPR3-C5orf23 (rs1173771: 0.92, 0.87–0.98; P= 0.009) loci. Among subjects not taking BP-lowering drugs, three SNPs within the NPPA/NPPB locus were nominally associated with increased risk of OH (rs17367504: 1.13, 1.02–1.24; P = 0.02, rs198358: 1.10, 1.01–1.20; P = 0.04, and rs5068: 1.22, 1.04–1.43; P = 0.01). Moreover, an ADM variant was nominally associated with continuous orthostatic systolic BP response in the adjusted model (P= 0.04). Conclusion: The overall association between common gene variants in BP loci and OH was generally weak and the direction of effect inconsistent with resting BP findings. These results suggest that OH and resting BP share few genetic components
Common genetic determinants of lung function, subclinical atherosclerosis and risk of coronary artery disease
Chronic obstructive pulmonary disease (COPD) independently associates with an increased risk of coronary artery disease (CAD), but it has not been fully investigated whether this co-morbidity involves shared pathophysiological mechanisms. To identify potential common pathways across the two diseases, we tested all recently published single nucleotide polymorphisms (SNPs) associated with human lung function (spirometry) for association with carotid intima-media thickness (cIMT) in 3,378 subjects with multiple CAD risk factors, and for association with CAD in a case-control study of 5,775 CAD cases and 7,265 controls. SNPs rs2865531, located in the CFDP1 gene, and rs9978142, located in the KCNE2 gene, were significantly associated with CAD. In addition, SNP rs9978142 and SNP rs3995090 located in the HTR4 gene, were associated with average and maximal cIMT measures. Genetic risk scores combining the most robustly spirometry-associated SNPs from the literature were modestly associated with CAD, (odds ratio (OR) (95% confidence interval (CI95) = 1.06 (1.03, 1.09); P-value = 1.5×10-4, per allele). In conclusion, our study suggests that some genetic loci implicated in determining human lung function also influence cIMT and susceptibility to CAD. The present results should help elucidate the molecular underpinnings of the co-morbidity observed across COPD and CAD
A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes : results from an exome-wide association study of albuminuria
Aims/hypothesisIdentifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease and end-stage renal disease, which are highly prevalent in individuals with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited, with the majority of studies focusing on common variants.MethodsWe performed an exome-wide association study to identify coding variants in a two-stage (discovery and replication) approach. Data from 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and 2605 Greenlanders were included.ResultsWe identified a rare (minor allele frequency [MAF]: 0.8%) missense (A1690V) variant in CUBN (rs141640975, =0.27, p=1.3x10(-11)) associated with albuminuria as a continuous measure in the combined European meta-analysis. The presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rare CUBN variant had an effect that was three times stronger in individuals with type 2 diabetes compared with those without (p(interaction)=7.0x10(-4), with diabetes=0.69, without diabetes=0.20) in the discovery meta-analysis. Gene-aggregate tests based on rare and common variants identified three additional genes associated with albuminuria (HES1, CDC73 and GRM5) after multiple testing correction (p(Bonferroni)Peer reviewe
- …