195 research outputs found

    Driven Tracer Particle and Einstein Relation in One Dimensional Symmetric Simple Exclusion Process

    Get PDF
    We investigate the behavior of a tagged particle under the action of an external constant driving force in an infinite system of particles evolving in a one dimensional lattice according to symmetric random walks with hard core interaction

    Fluctuations in the weakly asymmetric exclusion process with open boundary conditions

    Get PDF
    accepted in Journal of Statistical PhysicsWe investigate the fluctuations around the average density profile in the weakly asymmetric exclusion process with open boundaries in the steady state. We show that these fluctuations are given, in the macroscopic limit, by a centered Gaussian field and we compute explicitly its covariance function. We use two approaches. The first method is dynamical and based on fluctuations around the hydrodynamic limit. We prove that the density fluctuations evolve macroscopically according to an autonomous stochastic equation, and we search for the stationary distribution of this evolution. The second approach, which is based on a representation of the steady state as a sum over paths, allows one to write the density fluctuations in the steady state as a sum over two independent processes, one of which is the derivative of a Brownian motion, the other one being related to a random path in a potential

    Effective swimming strategies in low Reynolds number flows

    Full text link
    The optimal strategy for a microscopic swimmer to migrate across a linear shear flow is discussed. The two cases, in which the swimmer is located at large distance, and in the proximity of a solid wall, are taken into account. It is shown that migration can be achieved by means of a combination of sailing through the flow and swimming, where the swimming strokes are induced by the external flow without need of internal energy sources or external drives. The structural dynamics required for the swimmer to move in the desired direction is discussed and two simple models, based respectively on the presence of an elastic structure, and on an orientation dependent friction, to control the deformations induced by the external flow, are analyzed. In all cases, the deformation sequence is a generalization of the tank-treading motion regimes observed in vesicles in shear flows. Analytic expressions for the migration velocity as a function of the deformation pattern and amplitude are provided. The effects of thermal fluctuations on propulsion have been discussed and the possibility that noise be exploited to overcome the limitations imposed on the microswimmer by the scallop theorem have been discussed.Comment: 14 pages, 5 figure

    Transport properties of heavy particles in high Reynolds number turbulence

    Full text link
    The statistical properties of heavy particle trajectories in high Reynolds numbers turbulent flows are analyzed. Dimensional analysis assuming Kolmogorov scaling is compared with the result of numerical simulation using a synthetic turbulence advecting field. The non-Markovian nature of the fluid velocity statistics along the solid particle trajectories is put into evidence, and its relevance in the derivation of Lagrangian transport models is discussed.Comment: 30 pages, 11 eps figures included. To appear in Physics of Fluid

    Inhibitory Effect of Quercetin on Oxidative Endogen Enzymes: A Focus on Putative Binding Modes

    Get PDF
    Oxidative stress is defined as an imbalance between the production of free radicals and reactive oxygen species (ROS) and the ability of the body to neutralize them by anti-oxidant defense systems. Cells can produce ROS during physiological processes, but excessive ROS can lead to non-specific and irreversible damage to biological molecules, such as DNA, lipids, and proteins. Mitochondria mainly produce endogenous ROS during both physiological and pathological conditions. Enzymes like nicotinamide adenine dinucleotide phosphate oxidase (NOX), xanthine oxidase (XO), lipoxygenase (LOX), myeloperoxidase (MPO), and monoamine oxidase (MAO) contribute to this process. The body has enzymatic and non-enzymatic defense systems to neutralize ROS. The intake of bioactive phenols, like quercetin (Que), can protect against pro-oxidative damage by quenching ROS through a non-enzymatic system. In this study, we evaluate the ability of Que to target endogenous oxidant enzymes involved in ROS production and explore the mechanisms of action underlying its anti-oxidant properties. Que can act as a free radical scavenger by donating electrons through the negative charges in its phenolic and ketone groups. Additionally, it can effectively inhibit the activity of several endogenous oxidative enzymes by binding them with high affinity and specificity. Que had the best molecular docking results with XO, followed by MAO-A, 5-LOX, NOX, and MPO. Que's binding to these enzymes was confirmed by subsequent molecular dynamics, revealing different stability phases depending on the enzyme bound. The 500 ns simulation showed a net evolution of binding for NOX and MPO. These findings suggest that Que has potential as a natural therapy for diseases related to oxidative stress

    Some relations between Lagrangian models and synthetic random velocity fields

    Full text link
    We propose an alternative interpretation of Markovian transport models based on the well-mixedness condition, in terms of the properties of a random velocity field with second order structure functions scaling linearly in the space time increments. This interpretation allows direct association of the drift and noise terms entering the model, with the geometry of the turbulent fluctuations. In particular, the well known non-uniqueness problem in the well-mixedness approach is solved in terms of the antisymmetric part of the velocity correlations; its relation with the presence of non-zero mean helicity and other geometrical properties of the flow is elucidated. The well-mixedness condition appears to be a special case of the relation between conditional velocity increments of the random field and the one-point Eulerian velocity distribution, allowing generalization of the approach to the transport of non-tracer quantities. Application to solid particle transport leads to a model satisfying, in the homogeneous isotropic turbulence case, all the conditions on the behaviour of the correlation times for the fluid velocity sampled by the particles. In particular, correlation times in the gravity and in the inertia dominated case, respectively, longer and shorter than in the passive tracer case; in the gravity dominated case, correlation times longer for velocity components along gravity, than for the perpendicular ones. The model produces, in channel flow geometry, particle deposition rates in agreement with experiments.Comment: 54 pages, 8 eps figures included; contains additional material on SO(3) and on turbulent channel flows. Few typos correcte

    Exact Free Energy Functional for a Driven Diffusive Open Stationary Nonequilibrium System

    Full text link
    We obtain the exact probability exp[LF({ρ(x)})]\exp[-L {\cal F}(\{\rho(x)\})] of finding a macroscopic density profile ρ(x)\rho(x) in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system LL \to \infty. F\cal F, which plays the role of a nonequilibrium free energy, has a very different structure from that found in the purely diffusive case. As there, F\cal F is nonlocal, but the shocks and dynamic phase transitions of the driven system are reflected in non-convexity of F\cal F, in discontinuities in its second derivatives, and in non-Gaussian fluctuations in the steady state.Comment: LaTeX2e, RevTeX4, PiCTeX. Four pages, one PiCTeX figure included in TeX source fil

    The role of tank-treading motions in the transverse migration of a spheroidal vesicle in a shear flow

    Full text link
    The behavior of a spheroidal vesicle, in a plane shear flow bounded from one side by a wall, is analysed when the distance from the wall is much larger than the spheroid radius. It is found that tank treading motions produce a transverse drift away from the wall, proportional to the spheroid eccentricity and the inverse square of the distance from the wall. This drift is independent of inertia, and is completely determined by the characteristics of the vesicle membrane. The relative strength of the contribution to drift from tank-treading motions and from the presence of inertial corrections, is discussed.Comment: 16 pages, 1 figure, Latex. To appear on J. Phys. A (Math. Gen.
    corecore