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Driven Tracer Particle and Einstein Relation in 
One Dimensio~ Symmetric Simple Exclusion Process1 

C. Landim, S. OlIa, S. B. Volchan 

Abstract: We investigate the behavior of a tagged parti­
cle under the action of an external constant driving force in 
an infinite system of particles evolving in a one dimensional 
lattice according to symmetric random walks with hard core 
interaction. We prove that the position diffusively rescaled 
fX (f-2t) of the test particle converges in probability, as 
f ~ 0, to a deterministic function v(t), for a large class 
of initial distributions of the random environment. The func­
tion v(·) depends only on the initial distribution of the ran­
dom environment through a non linear parabolic equation. An 
Einstein relation is satisfied asymptotically when the external 
force is small. This law of large numbers for the position of the 
tracer particle is deduced from the hydrodynamicallimit of an 
inhomogeneous one dimensional symmetric zero range process 
with an asymmetry at the origin . This result is connected also 
with the evolution of the interfaces in a Potts model in two 
dimension under a Glauber dynamics at infinite temperature, 
for some particular initial conditions. 

Key words: Tagged particle, Einstein relation, Exclusion 
processes, Hydrodynamic limit, interface dynamics 

Introduction. 
The motion of a tagged particle in an equilibrium fluid is one of the most 

studied questions in statistical mechanics. It is a standard example of a classical 
problem : deduce from a large system, typically infinite, evolving according to 
Newton 's equations, a simple stochastic behavior of a small subsystem. In the 
case of a tagged particle, the question resumes to derive the motion of a single 
particle, through a macroscopic rescaling of space and time, from the dynamics of 
the entire system. 

Although the popularity of Brownian motion, besides some particular cases 
(cf. [Spil], [DGLI ,2]' [Spo], [So] and references therein), a general deduction of 
the macroscopic behavior of a tagged particle from the underlying microscopic 
dynamics is far from being well understood. Several simplifications have been 
introduced to investigate this problem rigorously : either by considering models 
with known invariant measures (reducing the phase space, for instance [GLRl,2]' 
[Spo]) or introducing some randomness in the evolution (particles that dies after 
the collision with the tagged particle [So], particles with random exponential life 
time [PSV], particles evolving according to some stochastic dynamics [KV], [Spo]). 
We refer to [So] for a recent review on the subject . 
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We consider in this article the one dimensional, nearest neighbor symmetric 
simple exclusion process. It can be described as follows. Particles evolve on the 
one dimensional lattice ;;Z with an exclusion rule that prevents more than one 
particle per site. Each particle waits a mean one exponential time at the end of 
which it attempts to jump to the right or left with probability 1/2. If the chosen 
site is already occupied, the jump is suppressed to tonform to the exclusion rule. 
We add to this system a tagged particle submitted to the same exclusion rule 
that forbids more than one particle per site and that, in contrast with the other 
particles, experiences the action of a constant external driving force . In result, the 
tagged particle jumps with probability 1/2 < p $ 1 to the right and q = 1 - p to 
the left. 

Without the presence of the environment, the tagged particle would behave as 
an asymmetric random walk . In particular, if Xt stands for its position at time t , 
rl (Xt - Xo) would converge almost surely to p - q as t t 00. The presence of the 
symmetric environment affects dramatically the behavior of the tagged particle. 
Since the un tagged particles behave as symmetric random walks, we expect an 
accumulation of particles at the right of the tagged particle and a rarefection at 
the left . The environment decelerates thus the motion of the tagged particle and 
tends to confine it . In fact the main result of this article states that for a large 
class of initial states, 

I. Xt - Xo _ 
1m . t; ~ . V 

t-+oo v t 
(0 .1) 

in probability, where v is a real number depending only on the macroscopic profile 
of the initial state through the solution of a non linear parabolic equation with 
boundary conditions. Burlatsky et al. ([BOMM], [BOMR]) derived (0 .1) heuristi-

. cally in the case where the initial state is a Bernoulli product measure with some 
fixed density 0' . 

The diffusive scale Vi, already obtained by Harris [H] in the case of Brownian 
particles with hard core interaction in dimension I, is peculiar to the nearest 
neighbor assumption that restrains the tagged particle to jump over the symmetric 
particles. In higher dimension or in dimension I without the nearest neighbor 
assumption, one would expect the tagged particle to move in the scale t . 

In the context of interacting particle systems, the asymptotic behavior of a 
tagged particle has been continuously investigated. The question was already 
present in Spitzer [Spi2]. For general symmetric simple exclusion processes, it 
follows from a general result on additive functionals of reversible Markov processes 
due to Kipnis and Varadhan [KV] that r1/2(Xt - Xo) converges in distribution to 
a non degenerate Gaussian variable. More precisely Kipnis and Varadhan establish 
an invariance principle, i.e., if the system is in equilibrium at a density of particles 
0' the distribution of the rescaled process f(X.->t - Xo) converges to the law of a 
Brownian motion with diffusion coefficient D( 0') . In general D( 0') is a complicate 
function of 0' . In dimension 3 or more, Varadhan [VI] proves that D(O') is Lipschitz 
continuous. More recently Asselah, Brito and Lebowitz have proven some bounds 
of D(O') in terms of the size or the range of the jumps [ABL] . In the case ofthe one 
dtmensional nearest neighbor model it happens that D(O') = O. In fact here the 
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tagged particle is trapped between its neighbors and the fluctuations of its position 
will depend directly on the fluctuations of the density of the particles around. In 
this case, Arratia showed that r 1/ 4(Xt - Xo) converges in distribution, as t t 00, 

to a Gaussian variable with variance 

(0.2) 

In fact (cf. [RV]) a corresponaing invariance principle could be established, i.e. 
the convergence of the properly rescaled process ((..xe -:4t - Xo) to a fractional 
Brownian motion of parameter 1/2, i.e. a Gaussian process with covariance 

(0.3) 

This behavior should be characteristic of everyone dimensional nearest neighbor 
model [Spo]. 

In section 6 we prove that if we start with an constant profile of density 0 then 

. v I-of; hm --=-_. -
p-q-+O p - q ° 11" 

that means the Einstein relation between the mobility v given by (0.1) and the 
diffusivity given by (0.2) is verified. This is in agreement with the heuristic results 
of [BOMR]. 

Einstein relations can be established for a large class of weak-asymmetric models 
(i .e. the asymmetry is rescaled with the parameter ( relating the microscopic and 
the macroscopic scales (cf. [LR])) . If the asymmetry is strong (i.e. not rescaled in 
the macroscopic limit) rigorous results on the Einstein relations are rare, essentially 
for the difficulty to compute the stationary state of the environment as seen from 
the tagged particle. The case studied in the present paper is non-stationary, but 
somehow the local equilibrium established around the particle is responsible for 
the validity of the Einstein relation. 

Here is the idea of our approach. The first point is to understand that this is 
a non-stationary problem: the tracer will start to push the particles in front and 
generate an inhomogeneous density profile that will evolve deterministically under 
a diffusive rescaling of space and time. The proper way to formulate the problem 
is thus to prove that 

((Xe->t - Xo) -+ v(t) 

where v(t) is a deterministic function of the (macroscopic) time t. This suggest that 
the problem is basically a hydrodynamic limit (cf. [KL]) with a moving boundary. 
We prove in fact that this model has a hydrodynamic behavior described by the 
solution of a Stefan problem (cf. (6.3)). The idea is to introduce Lagrangian 
coordinates : there is a natural map that transforms a one dimensional nearest 
neighbor exclusion process in a zero range process. This map transforms the 
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moving boundary problem in a fixed boundary problem. Then we need to prove 
the hydrodynamic limit for a zero range process with boundary conditions. The 
hydrodynamic limit for systems with boundary conditions is an interesting problem 
in itself: dissipative boundary conditions (like here in the totally asymmetric case 
p ~ 1, q = 0) are a source of irreversibility of the system. Most hydrodynamic 
limit proved until now ~refor systems with nice stationary measures. 

Most interesting is the connection between this problem and the evolution of the 
random interfaces in a 3-state Potts model at zero temperature under a Glauber 
dynamics. Herbert Spohn made us notice that our results permits to deduce the 
macroscopic evolution of these interfaces for some particular initial conditions. 

The article is divided as follows. In section 1 we state the main results , explain 
why the diffusive scale is the correct scale to investigate the motion of the tagged 
particle and give the connection to the evolution of interfaces in the 2-dimensional 
Potts model at zero temperature. In section 2 we introduce the terminology and 
review some basic results concerning zero range processes used throughout the 
article. In section 3 and 4 we prove the hydrodynamic limit for the associated zero 
range processes in the cases p = 1 and p < 1. In section 5 we deduce the asymptotic 
behavior of the tagged particle from the hydrodynamicallimit. In section 6 we 
obtain an explicit formula for the position of the tagged particle when the initial 
state is associated to a constant profile and deduce Einstein 's relations. In section 
7 we investigate the evolution of a surface model in a two dimensional Potts model. 
In the appendix we prove the uniqueness of the weak solutions of the non-linear 
diffusive equations involved in this work. 

This paper is a detailed version of [LOV]. 

1. Statements of the results. 
Consider a family of indistinguishable particles moving according to continuous 

time, symmetric, nearest neighbor random walks on Z with an exclusion rule that 
prevents more than a particle per site. To this system we add a tagged particle 
that moves according to an asymmetric random walk, jumping with probability p 
to the right, probability q to the left, and that respects the exclusion rule . The 
configuration of the system is denoted by (X,e). where X E Z is the position of 
the tagged asymmetric particle, and e E {O,l}z is the configuration of all other 
particles. Clearly e(X) = 0, because that site is already occupied by the asym­
metric particle. The system just described is a Markov process whose generator 
acts on local functions F: Z x {O, l}z -t IR as 

CF(X,e) = (1/2) L [F(X,e,z+1) - F(X,e)] 
z;l!X-l ,X 

+ p(~ - e(X + I))[F(X + l,e) - F(X,e)] 
(1.1) 

+ (1 - p)(1 - e(X - I))[F(X - 1, e) - F(X, e)] , 

wllere C,z+l is the configuration obtained from e, exchanging the occupation vari-
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aQles e(z), e(z + 1) : 

{
e(y) ifY=Fz,z+l, 

e·z+1(y) = e(z) if y = z + 1, 

e(z + 1) if y = z . 

To fix ideas set p> 1/2 and Xo = O. Here X t stands for the position of the 
asymmetric tagged particle at time t. We prove in this article that for each t ~ 0 
and for a class of initial states of the random environment eo, as Nt 00, XtN~/N 
converges in probability to a real number Vt that depends only on the distribution 
of eo. We start describing the initial states of the random environment eo. 

Denote by Z. the set of integers distinct from O. For 0 $ a $ 1, denote by I'a 
the Bernoulli product measure on to, l}z. with density a : . 

I'a{e ,e(z) = I} = a, 

for every z in Z •. More generally, for a positive integer N and a profile 11:0: JR -+ 
[0,1], denote by I'~(-) the Bernoulli product measure associated to 11:0 : 

I'~(-){e ,e(z) = I} = lI:o(z/N) 

for z in Z. and by PJJN the probability measure on the path space D(JR+, Z x 
"00 

to, I}Z) induced by the Markov process with generator £, defined in (1.1) and the 
the initial measure 60 x I'~(-)' 

Before stating the theorem, we introduce some notation required to define the 
limit Vt. Fix a strictly positive profile 11:0. Denote by 1£: JR -+ JR, :F: JR -+ JR the 
functions defined by . , 

1£ (A) = lA lI:o(u) du, :F(B) - 1 1 (1.2) - lI:o(1£- 1 (B» - . 

Here 1£-1 stands for the inverse of the strictly increasing, absolutely continuous 
function 1£. 

Consider the non-linear parabolic equation with boundary condition on lR+ xlR+ 

{ 
OtP = (1/2)~~0(p) 
p(t,O) = 0 

p(O,·) = :F+(.) , 

(1.3) 

where :F+ stands for the restriction of:F on lR+ and ~o(p) = p/(l + p); and the 
nonlinear parabolic equation on lR+ x JR with boundary condition at the origin 

I OtP = (1/2)~~0(p) 
~o(p(t, 0+» = q~o(p(t, 0-» 
ou~o(p(t, 0+» = ou~o(p(t, 0-» 
p(O,·) = :F(.) . 

(1.4) 
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A precise definition of solutions of these differential equations is given in sections 
3 and 4. In the Appendix we prove a uniqueness result and in section 6 we show, 
introducing Lagrangian coordinates, that this equation can be transformed in a 
linear Stefan problem so that the original exclusion process with an asymmet­
ric particle has a hydrodynamic behavior described by the solution of a Stefan 
problem. 

Theorem 1.1 . Assume p = 1. Fix a profile KO: lR+ -+ [0,1] such that u $ KO $ 
1- u for some u > O. Then, for every 6> 0, 

. [I XtN~ I ] hm PJJN -N - Vt > 6 
N-+oo "0( ' ) 

0, 

where 

Vt = 100 
{.r(u) - p(t, u) }du (1.5) 

and p is the solution of equation (1 .3). 

Theorem 1.2 . Assume p < 1 and for a < 1 define let tPa(u) = al{u < O} + 
(qa/p)l{u > O}. Fix a profile KO:lR -+ [0,1] such that tPa $ KO $ 1- u for some 
u > 0, 0 < a < 1. Then, for every 6 > 0, 

= 0 , 

where Vt is given by (1.5) and p is the solution of equation (1..4). 

The integral defining Vt in (1.5) must be understood in the following sense 
consider the sequence {H n , n ~ 1} of real functions defined by 

(1.6) 

It follows from the equation satisfied by p that Jo+oo Hn(u){.r(u) - p(t, u)}du 
converges as n t 00 . This limit defines the right hand side of (1.5) . 

In the case where the initial state is a Bernoulli product measure with a fixed 
density a , more explicit computations can be made: 

Theorem 1.3 . Fix a > 0 and recall that JJa stands for the Bernoulli product 
measure with density a . If the initial state is JJa, then 

lim ~ = (1 - a) fit . 
p-q-+O p - q a V -;-

Theorems 1.1 and 1.2 are proven in section 5. Theorem 1.3 and more asymptotic 
results are proven in section 6. 

We now explain why in Theorerps 1.1 and 1.2 the asymmetric tagged particle 
moves at scale Vi and why is the displacement related to the solution of the 
differential equations (1.3), (1.4). 
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We start labeling all particles. The tagged asymmetric particle is labeled O. For 
j ~ 1, we label the j-th particle at the right (left) of the tagged particle by j (- j) . 
For x in Z, denote by 7](x) the number of holes between particle x and particle 
x+ 1. In this way we transformed a configuration of {O, l}z with a particle at some 
'lite X into a configuration {7](x), x E Z} of NZ. Denote by T: Z x {O, l}Z -+ NZ 
the transformation just described. T induces a transformation on the space of 
continuous functions (resp. probability measures) of Z x{O, l}Z to the space of 
continuous functions (resp. probability measures) of NZ still denoted by T. 

The dynamics of the process (Xt,~t) induces a dynamics for 7]t that can be 
informally described as follows. For every x I- -1, if there is at least one particle 
at site x, at rate 1/2 one of them jumps to site x + 1 and, symmetrically, if there 
is at least one particle at site x + 1, at rate 1/2 one of them jumps to site x. 
The picture is slightly different between sites -1 and 0 due to the behavior of the 
asymmetric tagged particle. A particle jumps at rate q from site -1 to site 0 if 
there is a particle at -1 and a particle jumps at rate p from site 0 to site -1 if 
there is a particle at the origin. 

This process is the so called zero range process with an asymmetry at the origin. 
The position at time t of the asymmetric tagged particle corresponds in the zero 
range model to the total number of jumps between 0 and t from 0 to -1 minus 
the total number of jumps in the same interval from -1 to 0 : 

Xt = ~)7]o(x) - 7]t(x)} . 
x~O 

Notice that though the sums 2:x>o 7]o(x) and 2:x>o 7]t(x) might be both infinite, 
we can give a precise meaning for the sum: the right hand side is to be understood 
in the same sense as the right hand side of (1.5) by the use of the functions (1.6) 
(with the limit in the L2 sense) (cf. [RV]). 

Since in the zero range process the jumps of particles over all bonds, except the 
bond {-I , O}, are symmetric, we expect the process to have a diffusive hydrody­
namic behavior, i.e., that for a large class of initial profiles, the process accelerated 
by N 2 is such that for all continuous functions with compact support G, 

(1.7) 

converges in probability to Im G(u)p(t, u)du, where p is the solution of a nonlinear 
heat equation . 

The zero range processes we consider in this article have an asymmetry at the 
origin. This asymmetry is reflected in the hydrodynamic equations (1.3) and (1.4) 
by a boundary condition at the origin. \ 

In particular, approximating 1 {u > O} by the sequence defined in (1.6), it 
follows from (1.7) that 

N-1 L {7]o(x) - 7]tN2(X)} 
x~O 
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converges in probability to Vt given by (1.5). This explains the renormalization in 
Vi and the relation between Vt and the differential equations (1.3) and (1.4). 

We investigate also the evolution of a surface in a two dimensional Potts model. 
On Z2, consider a spin system {O"(x), x E Z2} taking three possible values : O"(x) E 
{-I, 0, I} for x in Z2 and the Hamiltonian;:' defined by 

;:'(0") = E £(o"(X))OC7(Z),C7(II)' 

Z,IIEZ~ 
IZ-III = l 

where Oa,b is equal to 1 if a = band ° otherwise and, say, £(-1) < t(O) = £(1). 
This assumption on £ states that O-spins or I-spins stick together strongerly that 
-I-spins. It will be explained below. 

We consider a spin flip dynamics where a spin is allowed to change at rate 1/2 
if and only if it does not increase the energy. More precisely, consider the Markov 
process whose generator acts on cylinder functions as 

1 

(c.p/)(O") = (1/2) E E l{(6oz ,j;:')(O") $ O}[/(O"z,j) - 1(0")] , (1.8) 
zEZ~j=-l 

where O"z ,j stands for the configuration where the spin at x is fixed to be equal to 
j: 

(O"z,j)(y) = {~(y) for y::/: x , 
J for y = x. 

and (6oz,j;:')(O") is the modification of the Hamil '<" i.an due to the flip of the spin 
at x to j : 

The total energy may therefore only decrease for the dynamics just introduced . 
Denote by M = M(N) the collection of non decreasing functions on N and by 

A the set of configurations 0" for which there exists a function f in M such that 

(a) O"(x) = -1 if and only if Xl < 0, 

(b) O"(x) = 0 if and only Xl ~ ° and X2 $ f(xt}, 

(c) O"(x)' = 1 if and only Xl ~ ° and X2 > f(xt} . 
The configurations of A are thus characterized by the monotone functions f in M : 
there is a one to one correspondence between M and A. Moreover, it is easy t. 
check that the set A is stable under the dynamics induced by the generator C.; 
defined in (1.8) because we assumed £(-1) < t(I) . More precisely, for a config­
uration 0" , denote by P;P the probability on the paths space D(m.+, {-I , 0, I}Z~~ 
induced by the Markov process O"t with generator L.p defined in (1.8) starting 
from the configuration 0". It is not difficult to show that for every 0" in A, 
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For each configuration (T in A, denote by f(7 the monotone function in M ass0-

ciated to (T. Since A is stable under the dynamics and the correspondence between 
A and M is one to one, to investigate the evolution of (Tt starting from a configu­
ration (T in A we may as well examine the evolution of the process ft = f(7,. 

We now introduce some notation in order to state the fourth main theorem of 
this article. Denote the configurations of the space W'" by the symbol TJ. For each Q ~ 0, denote by vt the product measure on W'" whose marginals are given by 

vt{TJ,TJ(z)=k} = I~QC:Q)'"· 
For each probability measure m on M, denote by 2lm the probability measure on 
W'" that corresponds to the distribution of H(z + 1) - Hz), z ~ O}. Fix a sequence 
of probability measures {mN , N ~ I} on M. We shall assume that 

(AO) For every N ~ 1, m N H, fo, = O} = 1, 
(AI) The sequence (21mN) is bounded above (resp. below) by vt (resp. vt) for 

some 0 < A < 0 < 00. 

(A2) There exists a bounded function AO: R+ ~ 1R+ such that for each continuous 
function G: R+ ~ IR with compact support and each ~ > 0, 

J~oo m N [IN-1 L G(z/N)N-1f(z) - J du G(u)Ao(u)1 ~~] = O. 
:z: 

Assumption (AO) is just a normalization. Assumption (AI) requires the distri­
bution of the increments {Hz + 1) - Hz), z ~ O} to be bounded above and below 
by some product measure in order to be able to use coupling techniques. The third 
one just imposes a law of large number for the surface at time O. 

For each probability measure m on M, denote by JP!;t:,N the probability mea­
sure on the path space D(R+, M) induced by the Markov process ft = f(7, with 
generator (1.8) accelerated by N 2 and the initial measure m. 

Theorem 1.4 . Fix a sequence of initial measures {mN , N ~ I} satisfying as­
sumptions (AO), (AI), (A 2). For every ~ > 0 

J~oo JP!:;'t'[lN-1ft(0) - Vtl >~] = 0, 

where Vt is given by (1.5) and p is the solution 0/(1.9) with initial condition AO 
instead of F+. Moreover, for any continuous function G:R+ ~ R with compact 
support and any ~ > 0, 

.J~ il':::;;' [Iw' ~ G(x / N)N-'{f,(x) - f,(0)) - J d. G( .)~(t, .) I ~ .] 0, 

where A is the unique solution of 

{ 
8tA = (1/2)8u~0(8uA) , 
8u A(t,0) = 0, 

A(O,·) = AOO. 
(1.9) 
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2. Zero range processes. 
We have seen that the motion of the asymmetric tagged particle is related to 

zero range processes. In this section we establish some notation and recall some 
basic facts. 

The nearest neighbor, symmetric, space homogeneous zero-range process (7Jt}t>o 
is one of the simplest interacting particle systems that describes the evolution of 
particles on the lattice Z. It can be informally regarded as follows. We fix a jump 
rate g:N -t R+ such that g{O) = 0 < g{k) for k ~ 1. If there are n particles at 
some site x, at rate g{n) one of them, independently of the number of particles at 
other sites, jump with probability 1/2 to one of its neighbors. This is a Markov 
process on NZ whose generator acts on functions that depend only on a finite 
number of coordinates as 

(Lf){7J) = (1/2) Lg{7J{x))[f{uzo .!l7J) - f{7J)] , (2.1) 
zoEZ 

where, for configurations 7J with at least one particle at x, uzo .!l7J stands for the 
configuration obtained from 7J moving a particle from x to y : 

if z =p x,y, 

if z = x, 
ifz=y. 

(2.2) 

To guarantee the existence of such process (cf. [AD, we assume the jump rate 
to be Lipschitz: at = sUPn>O Ig{n + 1) - g{n)1 < 00. Denote by Z: IR+ -t R+ the 
partition function defined by 

k 
Z{<p) = ~ <p 

~ g(1)·· ·g{k) 
k~O 

and by 0 < <p. ~ 00 the radius of convergence of Z. In order to avoid some 
degeneracy we assume that the partition function Z diverges as approaching its 
domain of definition : 

lim Z{<p) = 00. 
I{>-+I{>' 

(2.3) 

For 0 ~ <p < <p., let iiI{> be the translation invariant product measure oit NZ with 
marginals given by : 

(2.4) 

for i ~ O. Let R{ <p) be the density of particles for the measure iiI{> : 

(2.5) 
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From assumption (2.3) it follows that R: [0, <p*) -+ [0,00) is a smooth strictly 
increasing bijection. Denote by ~: lR+ -+ [0, <p*) the inverse of R(·). Since R( <p) 
has a physical meaning as the density of particles, instead of parameterizing the 
above family of measures by <p, we use the density p as parameter and we write: 

Vp = ii~(p) 

for p ~ O. With this convention, 

~(p) = Ev,[u(,,(O))] . 

. Moreover, ~ is. a smooth function whose derivative is bounded above by at and 
below by a strictly positive constant on each compact set of JR+ (cf. [KL]) . 

The hydrodynamic limit for the zero range in infinite volume with generator 
given by (2 .1) is presented in [LM] . The proof relies on the so called one and 
two block estimates, that allow to replace cylinder functions by functions of the 
empirical density (cf. [GPV], [KL]). In the two blocks estimate, a cut off to avoid 
large densities must be introduced. In the context of zero range processes, to 
justify this cut off, we need to assume either that the product invariant measures 
have all exponential moments finite (i .e. that Z(·) is finite on JR+) or that the 
jump rate g(.) is non decreasing and that the initial state is bounded above by 
an invariant measure. In the latter case the entropy arguments are replaced by 
coupling arguments (that are in force because the process is attractive). Since we 
are mainly interested in this paper in the case where g( k) = 1 {k ~ I}, we shall 
assume throughout this article, that the jump rate is non decreasing and bounded 
(if it were unbounded, it would belong to the first class of models). 

3. The case p=1. 
In the case where the asymmetric tagged particle jumps only to the right, the 

evolution of the medium on its left is irrelevant for its motion. For the correspond­
ing zero range dynamics, p = 1 means' that at rate 1 a particle at the origin jumps 
to -1 and no particle jumps from -1 to O. We may therefore assume that there 
is at -1 an infinite reservoir or an absorption point to which particles from the 
origin jump at rate 1 and from which no particle jumps. Moreover, the position of 
the tagged particle at time t corresponds in the zero range process to the number 
of particles that left the system before time t. 

Since the techniques required to prove the hydrodynamic behavior of such zero 
range process apply to a large class of systems, we introduce a general set up. Fix 
a jump rate 9 : N -+ JR+ satisfying the assumptions of section 2. Consider the 
zero-range process on N whose generator acts on cylinder functions as 

where 

L = Lb + L {L:z:,:Z:+1 + L:Z:+1':Z:} , 
:z:?;O 

(3.1) 
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and 

Here, for a site X, i)z stands for the configuration with no particles but one at x, 
summation is performed site by site and (Tz,!lTJ is defined in (2.2). 

To state the hydrodynamic behavior of the zero range process with absorption 
at -1, we need to introduce some terminology on weak solutions of non linear 
parabolic equations. Fix a bounded function Po: lR+ --t lR. A bounded function 
p: [0, T] x lR+ --t lR is said to be a weak solution of the partial differential equation 

in the layer [0, T] x lR+ if 

{ 
OtP = (1/2)a~(p) 
p(t,O) = ° 
p(O,·) = Po(-) 

(3.2) 

(a) 4>(p(t, u» is absolutely continuous in the space variable and for every t > 0, 

(b) p(t, 0) = ° for almost every ° ~ t ~ T and 

(c) For every smooth function with compact support G:lR+ --t lR vanishing at the 
origin and for every ° ~ t ~ T, 

J dup(t,u)G(u) - J dupo(u)G(u) = -(1/2) lot ds 1+ du G'(U)Ou4>(p(s, u». 

We prove in the appendix the uniqueness of weak solutions of (3.2) . The ex­
istence for special initial conditions Po follows from the tightness of the sequence 
QIJN defined below in Lemma 3.5 and the regularity of the limit points of this 
sequence proved in Proposition 3.6. 

We now describe the initial states considered in this section. For t.p < t.p*, 
denote by v~ the marginal on f:JN of the product measure Vip defined in (2.4). Fix a 
sequence of probability measures {JlN, N ~ I} on f:JN. To prove the hydrodynamic 
behavior of the system, we shall assume that 

(HI) The sequence JlN is bounded above (resp. below) by vt (resp. vt> for some ° <). < a < t.p* . 

(H2) There exists a bounded function Po: lR+ --t lR+ such that for each continuous 
function G: ~+ -+ ~ with. compact support and each J > 0, 

J~oo JlN [IN-1 L G(x/N),,(x) - J duG(u)po(u)1 ~ J] 0 . 
z 
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We already explained at the end of section 2 the first assumption. The second 
one just imposes a hydrodynamic behavior (a law of large number for the empirical 
measure defined below in (3.3)) at time O. 

For each probability measure Jl on NN, denote by JP>~ the probability measure 
on the path space D(IR+, NN) induced by the Markov process with generator (3.1) 
accelerated by N 2 and the initial measure Jl. Expectation with respect to JP>~ is 
denoted by JE~ . . . 

Theorem 3.1 . Fix a sequence of initial measures satisfying assumptions (Hl), 
(H2). For any continuous function G: 1R+ -t IR with compact support and any 
0>0 

where p is the unique solution of (3.2). 

For each positive integer N and each configuration TJ, define the empirical dis­
tribution rrN = rrN(TJ) as the positive Radon measure on 1R+ obtained by assigning 
a mass N- 1 to each particle: 

N- 1 L TJ(Z)Oz/N (3.3) 
z~O 

and set rrt' = rrN (TJd. Fix T > O. Theorem 3.1 follows from the convergence in 
distribution of the process {rrt', 0 ::; t ::; T}, stated below in Theorem 3.2, and 
some standard topology arguments (cf. Chap IV of [KL]). To state the convergence 
in distribution of the empirical measure, we need some notation. Denote· by M+ = 
M+(IR+) the space of positive Radon measures on 1R+ endowed with the vague 
topology, a metrizable topology. For each probability measure J1. on NN, denote by 
Q~ the probability measure on the path space D([O, T), M+) induced by JP>~ and 
the empirical measure rrN defined in (3.3). 

Theorem 3.2. The sequence Q;!N converges to the probability measure concen­
trated on the absolutely continuous path rr(t, du) = p(t, u)du whose density is the 
solution of (3.2). 

Guo, Papanicolaou and Varadhan introduced in [GPV] a method, well known 
by now, to prove Theorem 3.2 provided one has a bound on the entropy and on 
the Dirichlet form of the system with respect to some invariant measure. These 
bounds are usually obtained computing the time derivative of the entropy of the 
distribution of particles at time t relative to the equilibrium distribution. In the 
present context, however, there is only one invariant measure: the trivial one 0Q. 
concentrated on the configuration Q. with no particles. Since all other probabil­
ity measures on NN are orthogonal with respect to this one, the entropy of any 
reasonable measure with respect to 0Q. is infinite and the entropy method does 
not apply straightforwardly. To overcome this problem, we compute the relative 
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entropy with respect to an inhomogeneous product measure that is not invariant 
but close to the invariant measure. 

The proof of Theorem 3.2 may be decomposed in four distinct steps. We first 
obtain an estimate of the entropy and the Dirichlet form of the system with respect 
to some inhomogeneous product measure (Proposition 3.3) . Then, in Lemma 3.5 
we show that the sequence Q:N is tight and that all limit points are copcentrated 
on absolutely continuous measures. This part is relatively easy and does not 
differ from the conservative case in infinite volume (cf. [KL]). In thf; third step, 
postponed to the appendix, we prove the uniqueness of weak 30lutions of equation 
(3.2). Finally, in the last step, we prove that all limit points of the sequence Q:N 
are concentrated on weak solutions of (3.2) . This is ·done introducing a class of 
martingales associated to the empirical measure. . 

To obtain an estimate on the entropy and on the Dirichlet form, we first assume 
that the initial state satisfies the more restrictive condition: 

(H3) There exists a parameter {3 < cp* for which the relative entropy of p.N with 
respect to iit is bounded by CoN for some finit~ constant Co . 

This assumption implies that the initial state is a local perturbation of the product . 
measure iit- In particular, it forces the initial profile Po to be asymptotically 
constant. 

To deduce an estimate on the entropy of the system, we need to introduce a class 
of inhomogeneous product measures. Recall that we assumed the entropy of p.N 
with respect to iit to be bounded by CoN. For x ~ 0, define IX by IX = (3(l+x)/N 

for 0 ~ x ~ N - 1 and IX = fJ for x ~ N . Denote by ii.;(.) the product measure 
on Nlil with marginals given by 

(3.4) 

for all x > o. 
First ~ all, we claiI1l that the entropy of p.N with respect to ii.;(.) is bounded 

by C1N for some finite constant C1 depending oply on Co, a and fJ : 

H(p.N I ii.;(.») ~ CIN . (3.5) 

Indeed, by the explicit formula for the entropy, 

dii+ 
H(p.Nlii.;( .») = H(p.Nliit) + JIogd-~ dp.N. 

. v..,( .) 

By assumption (H3), the first term is bounded by CoN. Since IX = fJ for x ~ N, 
the Radon-Nikodym derivative diit /dii.;( .) is a cylinder function. Moreover, since 
IX ~ (3 for all x, 10gZ(!x)/Z({3) ~ 0 so that the. second term on the right hand 
side is bounded above by 
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Since 'Y:c ~ f3 and since by assumption (HI) JlN ~ ii!", this expression i~ bounded 
above by 

N-l 

-R(o:) E log ~ 
:c=o 

that divided by N converges, as N t 00, to a finite constant because log u is 
integrable in [0,1]. This proves claim (3 .5). 

For each probability density I with respect to ii~.), define the Dirichlet form . 
D-y(f) by . 

D-y(f) D-y,b(f) + D-y,;(f) D-y,b(f) + E D:c ,:c+t{f) , 
:c~0 

where, 

D-y,b(f) = (1/2) J 9(77(0» [J 1(77 - ~o) - Jfu)f dii~ . ) , 

D:c ,:C+l(f) = (1/2) J 9(77(X» [JI(77+~:C+1-~:C) - JI(77)f dii~ . ). 
(3.6) 

Proposition 3.3. Let sf be the semi-group associated to the generator L in­
troduced in {3.1} accelerated by N2. Denote by It = If the Radon-Nikodym 
derivative 01 JlN sf with respect to ii~ . ). There exists a finite constant C = .C(f3) 
such that 

Prool Denote by L~ the adjoint operator of Lwith respect to ii~.). It is easy to 
check that It is the solution of the forward equation 

(3.7) 

The explicit formula for the entropy gives that H(IfNSflii~) = J Itlog/tdii~ . ). 
Therefore, since It is the solution of the forward equation (3.7), 

8tH(JlNSflii~ .) = J N 2L;lt log/tdii~ . ) + J N2L;ltdii~ . ) 

J It N 2 L log It dii~ . ) (3 .8) 

N 2 J It(Llog/t - L;t)dii~.) + N 2 J Lltdii~.). 
Notice that the last term would vanish if ii~ . ) was an invariant measure. 
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Since for every a, b > 0, alog(b/a)-(b-a) is less than or equal to _(v'b-.Jci)2, 
for every x, y ~ 0, we have that 

ftL:c ,ylogft - L:c,yft ~ -(1/2)g(7J(x)) [Jft(7J+ Dy-D:c)-v'ft(7J)f 

ftLblogft - Lbft ~ -g(7J(0)) [v'!t(7J- Do)-v'ft(7J)f 

Recall the definition of the Dirichlet form D...,(·) introduced in (3.6). The pre­
vious estimate shows that the first term on the rightmost expression of (3.8) is 
bounded above by - 2N2 D..., (It). 

To estimate the term N 2 f L!tdi)~ . ), which correspond to the price we- are 
paying for not using an invariant distribution as reference measure, let us write it 
'explicitly 

N 2 J Lftdi)~ . ) = N 2 L: J (L:c,:c+dt + L:c+1,:cft) di)~ . ) + N 2 J Lbftdi)~ . ) (3 .9) 
:c?:o 

Performing the change of variable { = 71 - D:c + Dy , the measures change as 

In particular, we have that 

di)~ .) (7J) 1':cg({(y)) 

d/l~ . )({) - 1'yg(7J(x)) 

We may thus rewrite the right hand side of (3.9) as 

(1/2) ~ (~N1'~)(X) J g(7J(~))ft(7J) di)~ . ) 

+ (N 2 /2) C: -1) J g(7J(0))ft(7J) di)~ . ) 

+ N 2 J g(7J(0))[ft(7J - Do) - ft(7J)] di)~.) . 

(3.10) 

In this formula, (~N1')( x) stands for N 2 h:C+l + 1':c-1 - 21':c} . By definition of 1', 
(~N1')(X) = 0 for all x except at x = N - 1, where (~N1')(N - 1) = N 2(-YN_2 -
1'N-d which is negative because l' is non decreasing. The first line of (3.10) is 
therefore negative. A change of variables { = 71 - Do permits to write the second 
term of the second line as 
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The second line of (3.10) is therefore equal to 

because ")'0 = PIN, 1 is a density and ")'111'0 = 2. This concludes the proof of the 
proposition. 0 

For 0 ~ t ~T, let It = t- l f~ I.ds. By Gronwall inequality, the convexity of 
the Dirichlet form and of the entropy, we have the following estimates. 

Corollary 3.4. There exists a finite constant C2 depending only on a, P and Co 
such that 

H(rl 1t s;t JlNlv.;(.») + N 2 D..,(It) ~ C2Nr l . 

With the previous estimate on the entropy and on the Dirichlet form, we are 
in a position to apply the classical entropy method to prove the hydrodynamic 
behavior of the system. We start showing that the sequence Q~N is tight. 

Lemma 3.5 . The sequence Q~N is tight. Moreover, all limit points are con­
centrated on weakly continuous paths ?ret, du) that are absolutely continuous and 
whose density are bounded above by R( 0') : 

?ret, du) = pet, u)du and pet, u) ~ R(a). 

Proof. The proof that the sequence is tight and that all limit points are concen­
trated on weakly continuous paths is similar to the proof of the same statement 
in the space homogeneous case in infinite volume (cl. [KL]) . Details are left to the 
reader. 

To prove that all limit points are concentrated on absolutely continuous mea­
sures with density bounded by R(a), consider a zero range process with reflexion 
at the origin. Its generator L" is given by L.,>o{L.".,+l + L.,+l,.,}. It is easy 
to check that the homogeneous product measures v;t, cp < cp., are invariant for 
this system. Since JlN is bounded above by v,t and the iilrocess is attractive, it is 
possible to couple the zero range process with absorption at the origin with a zero 
range process with reflexion at the origin starting from v,t in such a way that the 
latter is always above the former. Since the latter is starting from an equilibrium 
state with density R(a), in the limit N t 00, the empirical measure becomes abso­
lutely continuous with density bounded by R( 0'). Since the zero range process with 
absorption at the origin is below the one with reflexion, the lemma is proved. 0 

We now show that all limit points of the sequence 9~N are concentrated on 
weak solutions of (3.2). 

Proposition 3.6 . All limit points Q 01 the sequence Q~N are concentrated on 
paths 71'(t, du) = pet, u)du such that 
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(i) For every smooth function G: lR+ -t lR with compact support and vanishing at 
0, 

(ii) For each 0 ~ t ~ T, 

ft ('0 2 
10 ds 10 du{ou<P(p(s,u))} < 00 

(iii) For each 0 ~ t ~ T, 

lot ds <P(p(s, 0)) = O. 

An integration by parts in (i), taking advantage of (iii), shows that every limit 
point of the sequence Q~N is concentrated on weak solutions of equation (3.2). 

Proof. Fix a limit point Q and assume without loss of generality that the sequence 
Q~N converges to Q. For each smooth function G of class CidlR+) vanishing at 

the origin, consider the martingale MtG ,N = MF defined by 

A simple computation using the fact that G vanishes at 0 and that the jump rate is 
bounded shows that the expected value of the quadratic variation of MtG vanishes 
as Nt 00 . In particular, by Doob inequality, for every <5 > 0, 

(3.11) 

On the other hand, a summation by parts shows that the integral term of the 
martingale M tG can be rewritten as 

(1/2) lt ds {N-1 L>~NG(z/N)g(TJ.(z)) + ('VNG)(0)9(TJ.(0»},. 
o z~l 

In this formula, for each positive integer N, 'V N and t::..~ denote respectively the 
discrete derivative and discrete Laplacian : 

('VNG)(U) = N {G(u + N- 1 ) - G(u)} , 

(t::..NG)(U) = N 2 { G(u + N-1) + G(u - N-1) - 2G(u)} . 
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For each positive integer l, denote by 7]i(z) the density of particles in a box of 
size 2l + 1 centered at z : 

i 1" 7] (z) = 2l + 1 L..J 7](z). 
I"-"I~i 

Since 7] is a configuration on N, it is understood in the previous formula that 
summation is carried out only over sites z in N , 

Fix 0 :5 t :5 T . By Lemma 3.5, Q is concentrated on weakly continuous paths. 
In particular, property (i) follows from (3 .11) and from Lemmas 3.7 and 3.8 below. 

Property (ii) is proved in a similar way as it is done for finite volume Ginzburg­
Landau processes (cf. [GPV]) , lattice gases or non gradient models in contact with 
stochastic reservoirs (cf. [ELS2], [KLO]) . 

Property (iii) follows from Lemma 3.9 below. 0 

Lemma 3.7 . For every continuous function H with compact support, 

li~-!,~pl~-!,!plEj'N [IT 
dtlN- 1 ~ H(z/N){g(7]t(z) - ~(7]f'f(z))}I] = O. 

Proof. The proof follows from the, by now standard, one and two blocks estimates 
made possible by the bounds obtained in Corollary 3.4 on the Dirichlet form and 
on the entropy (cf. [GPV]. [KL]). 0 

Lemma 3.8 • For every 0:5 t :5 T, 

lim lEj'N [it g(7],(O))ds] = O. 
N-+oo 0 

Proof. Recall that we denote by It the Radon-Nikodym derivative of I'N Sf with 
respect to v~.) and that h = rl J~ f,ds . With this notation, the expectation in 
the statement writes . 

t ! h(7])g(7](O»dv~ . ) . 

Adding and subtracting h(7] - i)o) and changing variables, we obtain that this 
integral is equal to 

t !g(7](O»[h(7]) - h(7] - i)o)]dv~ . ) + t-yo . 

The second term vanishes as N t 00 because 'Yo = f3 / N . The first one, by Schwarz 
. inequality and a change of variables, is bounded above by . 

1 -
A {lIglioo + 'Yo} + AD." ,b(Jt) . 

for every A > O. Choosing A = Vii, we conclude the proof of the lemma in virtue 
of Corollary 3.4. 0 
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Lemma 3.9 • For every 0 $ t $ T, 

lim sup lim SUplEl'N [ t ds~(21]~€(0))] = O. 
€-+O N-+oo 10 

Notice that in this last expression we multiply 1]f'€ (0) by 2 to obtain the density 
of particles on the box [0, eN]. 

The proof of Lemma 3.9 is performed in three steps. We first show that we may 
replace the cylinder function g(1](O)) by an average over a small macroscopic box 
around the origin. We then replace this average by ~(21]€N (0)) and recall Lemma 
3.8 to conclude. 

Lemma 3.10 • For each 0 $ t $ T, 

O. 

Proof. To keep. notation simple, denote by V(7J.) the expression inside braces in 
the previous formula: 

N€ 
V(7J) = g(7J(0)) - (eN)-1 Lg(1](Y)) 

y=O 

Recall that we denote by It the average density r1 J; f.ds. With this notation, 
we may rewrite the expectation in the statement of the Lemma as 

t J V(1])1t (7J)iI';( .) (d7J) . 

The idea of the proof is to use an integration by parts formula for g(7J(0)) - g(7J(Y)) 
to estimate the integral J f(7J)V(7J)iI';( .) (d7J) in terms of the Dirichlet form. 

A change of variables e = 1]- ()z gives that J V(1])h (7J)iI';( .) (d7J) is equal to 

(N e) -1 ~ ~ { 1y J { It (71 + ()y) - h (71 + ()y+ 1) } 

iI.;(.)(d7J) + hy -1Y+1] J h(1] + ()y+d il.;(.) (d1]) } . 

Since 1z is increasing in :1:, the second term is negative. 
On the other hand, rewriting the difference {a - b} = {It (71 + ()y) - h (1] + ()y+1)) 

as {Va - v'b}{ Va + v'b} and applying Schwarz inequality, we bound the first term 
~ . 

A N€ z-1 J 2 

2eN L L 1y { J h(7J + ()y) - J h(7J + ()y+d} iI.;(.)(d7J) 
z=Oy=O . 

1 N€ z-1 

+ AeN L L 1y J {h(1] + ()y) + h(7J + ()y+d }iI';(.) (d7J) 
z=Oy=O 
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for every A > O. Changing variables back, keeping in mind that 'Yz: is a non.decreas­
ing function and inverting the order of summation, we show that this expression 
is bounded above by 

for every positive A. Taking A = ¥'iN, we conclude the proof of the lemma 
applying Corollary 3.4. 0 

In view of Lemma 3.8, to conclude the proof of Lemma 3.9, it remains to replace 
the average of the cylinder function 9(77(X)) by ~(277fN(0)) . This is the content of 
the next result . 

Lemma 3.11 . For every continuous function G: [0, T] -+ JR, 

Proof. Recall the estimates of the entropy and the Dirichlet form obtained in 
Proposition 3.3. The proof of this result follows from these bounds and the, by 
now standard, proof of the one and two blocks estimate for homogeneous zero 
range processes that can be found in [KL], for instance. 0 

This concludes the proof of Theorem 3.2 under assumptions (HI), (H2), (H3). 
A coupling argument permits to remove Assumption (H3). 

Consider a sequence J1.N satisfying assumptions (HI) and (H2) . Fix A> ° and 
let J1. N,A, be the probability measure on NN defined by 

where AAN = {O, . . . , AN} and VA is the marginal of the probability measure V 

on A. 
Since vt ~ J1.N ~ vt and since all cylinder functions can be decomposed as 

the difference of two monotone functjons (cf. [KL]), a simple computation and the 
explicit formula for the relative entropy give that 

where v.::-,m is the marginal of v.::- on {O, .. . , m}. In particular, the entropy 
H(J1.N,A Ivt) is bounded above by CoN for some finite constant Co depending 
only on A, Q' and A. , 

Let pA(t, u) denote the solution of (1.3) with initial condition p~(u) = 
Po (u) 1 {u ~ A} + ,81 {u > A}. Investigating the time evoiution of the integral 
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J ... + due-upA(t, u)2 we obtain uniform in A a priori estimates that show that pA 

converges to the unique solution of (1.3) with initial condition PO· 
Since the jump rate 9 is non decreasing, we may couple a zero range starting 

from I'N with another one starting from I'N,A and show that as A t 00 both be­
haves exactly in the same way on compact sets. This coupling, the hydrodynamic 
behavior of the empirical measure for a process starting from I'N,A anti the conver­
gence of pA to p, permit to extend Theorem 3.2 to sequence of measures satisfying 
assumptions (HI) and (H2). 

4. The case P < 1. 
We turn in this section to the case where the asymmetric tagged particle jumps 

at rate p to the right and at rate q to the left . The corresponding zero range 
process has jumps at rate (1/2) over all bonds but {-l,O}. From the origin, 
particles jump at rate p to -1 and from -1 particles jump at rate q to O. Recall 
that to fix ideas we assume p > q. 

The purpose of this section is to deduce the hydrodynamic behavior of the 
just described space inhomogeneous process. Since the techniques req4ired to 
derive the hydrodynamic behavior apply to a large class of systems, we introduce 
a general set up. Fix a jump rate 9 : W -+ ~+ satisfying the assumptions of s~ction 
2 and consider the zero-range process on IZ with generator given by 

L = L {Lz,Z+l + Lz+1,z} + 2pLo,-1 + 2qL_ 1,o , (4.1) 
z;t-l 

where Lz,y is the generator defined just after (3.1). In contrast with the previous 
section, this system possesses a one parameter family of invariant measures. For 
each I{' < I{'* /p, denote by iI~ the pr.oduct measure'on WZ with marginals given by 

-i { () k} 1 I{': 
vI{> 7],7] x = = Z(l{'z) g(k)! ' (4.2) 

where I{'z = PI{' for x s: -1 and I{'z = ql{' for x ~ O. A direct computation shows 
that the Markov process with generator given by (4.1) is reversible with respect 
to these product measures. 

Before stating the main result of this section, we introduce some terminology on 
weak solutions of non-linear parabolic equations. Fix a bounded function Po: ~ -+ 
~. A bounded function p: ~+ x ~ -+ ~ is said to be a weak solution of the partial 
differential equation 

if 

! OtP = (1/2)d4>(p) 

p4>(p(t,O+)) = q4>(p(t,O-)) 

ou4>(p(t,O+)) = ou4>(p(t,O-)) 

p(O,·) = Po(-) 

(4.3) 
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(a) ~(p(t, u)) is absolutely continuous in the space variable and for every t > 0, 

it ds h. due-lul{au~(p(s,u))},2 < 00, 

(b) p~(p(t,O+)) = q~(p(t,O-)) for almost every t ~ 0 and 

(c) For every smooth function with compact support G: lR -+ lR and for every t > 0, 

[ dup(t,u)G(u) _ [dupo(u)G(u) = _ [t ds [ duG'(u)au~(p(s,u)). 
Jm . JIi Jo J ... 

Since p(t, u) is only a measurable function, requirement (b) must be understood 
as 

(4.4) 

for every t ~ O. The third property in (4.3) just states that there is conservation 
of the total mass at the origin. 

We prove in the appendix the uniqueness of weak solutions of (4.3). The ex­
istence for special initial conditions Po follows from the tightness of the sequence 
Q>~N defined below and the regularity of the liinit points of this sequence proved 
in Proposition 4.4. 

For each probability measure I' on NZ, denote by lP{: the probability measure 
on the path space D(lR+, NZ) induced by the Markov process with generator (4.1) 
accelerated by N 2 . and the initial measure 1' . Expectation with respect to lP{: is 
denoted by lE{: . 

We now define the initial states we consider in the first main theorem of this 
section. Fix a sequence of initial measures I'N on NZ. We shall assume that 

(lSI) The sequence I'N is bounded above (resp. below) by some invariant state iI~ 
(resp. iii) for some 0 < A < Q < 'P. /p. 

(IS2) There exists a function Po: lR -+ lR+ such that for each continuous function 
G: lR -+ lR+ and each 0 > 0, 

J~ooI'N[IN-ILG(x/N)77(X)-J duG(u)po(u)l~o] = O. 
:r: 

It follows from assumption (lSI) that the function Po in (IS2) is necessarily 
bounded. Assumption (lSI) is relatively restrictive and is explained at the end 
of section 2. The second assumption just imposes a hydrodynamic behavior (a 
law of large number) at time O. 

Theorem 4.1 . Consider a sequence of initial states I'N satisfying assumptions 
(IS1) , (IS2). For any continuous function G: lR -+ lR with compact support and 
any 0 > 0 

J~moo lP~N [IN-1 ~G(X/N)77t(:I) - J duG(u)p(t,u)1 ~ 0] = 0 
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where p is the unique solution of (4.3). 

Like in section 3 (cf. also Chap. IV of [KL]), we deduce this result from the 
convergence in distribution of the empirical measure 1rN = 1rN (77) defined as the 
positive Radon measure on ~ obtained by assigning a mass N-1 to each particle: 

1rN = N-1 L: 77(z)6z / N . 
zEZ 

(4.5) 

Set 1r[" = 1rN (77t) and denote by M+ = M+(~) the space of positive Radon 
measures on ~ endowed with the vague topology, a metrizable topology. Fix T > O. 
For each probability measure J..' on NZ, denote by Qfj the probability measure on 
the path space D([O, T] , M+) induced by IFfj and the empirical measure 1rN defined 
in (4.5). 

Theorem 4.2 . The sequence Q~N converges to the probability measure concen­
trated on the absolutely continuous path 1r(t, du) = p(t, u)du whose density is the 
solution of (4 ·3). 

The proof of this result is divided in three steps. We first show that the se­
quence Q~N is tight. We then prove that all limit points are concentrated on 
weak solutions of (4.3) . This is the content of Proposition 4.4 below. We conclude 
arguing that there exists a unique solution . This last part is left to the Appendix. 

Coupling arguments similar to the ones presented at the end of the previous 
section show that it is enough to prove Theorem 4.2 under the assumption 

(IS3) There exists a parameter f3 < cp* /p for which the relative entropy of J..'N with 
respect to iI~ is bounded by Co N for some finite constant Co . 

Lemma 4.3. The sequence Q~N is tight. Moreover, all limit points are concen­
trated on weakly continuous paths 1rt (du) . 

The proof of the tightness of the sequence Q~N is similar to the proof in the 
space homogeneous case and is thus omitted (cf. Chap IV, V of [KL]) . 

Proposition 4.4 . Every limit point Q* of the sequence Q~N is concentrated on 
absolutely continuous paths 1r(t, du) = p(t, u)du such that 

(a) Pt(u) ~ r(u), where r(u) = R(pa)l{u < O} + R(qa)l{u > O} , R(·) is the 
function defined in (2.5) and a the parameter introduced in assumption (IS1) . 

(b) Recall the constant Co introduced in assumption (IS3). Then , 

EQ·[lT 
ds 1m dU{Ou<I>(p(s , u))}2] < Co . 

(c) p<I>(p(t , 0+)) = q<I>(p(t,O-)) in the sense (4 .4). 
(d) For every smooth function G: ~ -+ ~ with compact support, 

< Pt , G > - < Po, G > = -(1/2) It ds J du (ouG)(u)ou<I>(p(s, u)) . 
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Proof Fix a limit point Q* and assume without loss of generality that the se­
quence Q:N converges to Q*. Property (a) follows from assumption (lSI) and 
some elementary coupling arguments since the process is attractive. 

To prove (b), we show that there exists a constant C = C(g) such that 

EQ. [s~p {IT 
dt J m(du) (auGHt, u)~(p(t, u» - C(g)IIGII~}] ~ Co. 

In this formula, the supremum is carried over all smooth functions G: [0, T] x~ -+ ~ 
with compact support, 11·112 stands for the L2([0, T] x~) norm and m(u) = pl{u > 
O} + q 1 {u < O}. The proof of this estimate follows closely the proof of a similar 
estimate in the space homogeneous case (cf. [KLO], [GPV]). We leave the details 
to the reader. 

Property (c) follows straightforwardly from Corollary 4.9 below. 
To prove (d), fix a smooth function G: ~ -+ ~ with compact support and 

consider the martingale M? = MtG,N defined by 

MtG = < 1f't', G > - < 1f'~, G > - 1t N 2L < 1f'~, G > ds . 

. A simple computation shows that the expected value of the quadratic variation of 
M? vanishes as N t 00 . In particular, by Doob inequality, for every b > 0, 

limsupJP>:N [ sup IMtGI > b] = O. (4.6) 
N-+oo 09~T 

On the other hand, the integral part of the martingale M tG writes 

1t {I q p 
ds 2N ~)~NG)(:c/N)g(7],(:C» + T(V'NG)(-I/N) 

o zEZ 

{g(7],(O» + g(7],(-I))}}. 

Since g is bounded and G has compact sUPJ)ort, we may replace in the above 
formula the discrete derivative and the discrete Laplacian by the continuous ones. 
For a fixed £ > 0 and 0 ~ t ~ T, let 

v.G(t) = J du{(~G)(u)~(1f't([u-2£:u+£])) 
+ (q_p)(V'G)(O){~(1f'.t([~,£])) +~(1f't([~f'O]))}. 

By (4.6) and Lemmas 4.5 and 4.6 below, for every 0 ~ t ~ T and 6 > 0, 

li~,:~pQ*[1 < Pt,G > - < po,G > -(1/2) 1t dsv.G(s)1 > 6] = 0 

because, by Lemma 4.3, Q* is concentrated on weakly continuous paths 1f't. In­
tegrating by parts v.G we obtain (d) applying parts (b) and (c) of the proposi­
tion. 0 

We proceed establishing the results needed in the proof of the previous propq­
sition. 
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lemma 4.5 • For every continuous function G: IR -+ IR with compact support, 

This result follows from the estimate on the entropy of J.lN and the, by now 
classical, one and two blocks arguments. Notice, however, that since 9 is assumed 
to be bounded, we need the measure J.lN to be bounded above by some invariant 
measure ii~ in order to introduce a cut off to avoid large densities in the two blocks 
estimate. 

For a site z, a configuration 1) and a positive integer i, denote by Ml (z, 1)) the 
density of particles for the configuration 1] on a box of size i at the right (left) of 
z: 

Lemma 4.6 . For every continuous function H : [0 ,11-+ JR, 

The same result holds if g((1]t(O)) is replaced by g(('7t(-l)) and M~(O,'7t) by 

M~N(-l,'7t) . 

This result follows from the next lemma and the statement of Lemma 3.11 
translated to the present context. 

Lemma 4.7 . For every continuous function H: [0,11 -+ JR, 

O. 

The same result holds if 9 (( '7t (0)) is replaced by 9 (( 1)t ( -1)) and the average over 
{O, ... , eN} is replaced by the average over {-eN, ... , O} . 

Proof To keep notation simple, denote by V(1)t} the expression inside braces in 
the previous formula: 

N~ 

V('7) g('7(O)) - (Ne)-l Lg(1)(Y)) 
y=O 

Inspired by the proof of Lemma 3.10, the idea here is to use an integration by 
parts formula for g(1)(O)) - g(1)(Y)) to estimate the integral f !t(1))V(1])ii~ . )(d1)) 
by the Dirichlet form. 
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By the entropy inequality, 

IEJ'N [I loT ds H(s) V(7].) I] 

~ H(~1i1h) + A~ 10glFvd exp {I loT d: G(s)ANV(7].) I} ] 
for every A > O. By assumption, the first term on the right hand side is bounded 
by C A-I . To prove the lemma it is therefore enough to show that the limit of the 
second one is less than or equal to 0 for every '"Y > O. Since e1xI ~ eX + e- x and 
limsuPN N-1 Iog{aN + bN } ~ max{limsuPNN-110gaN , limsuPNN-110gbN}, 
replacing H by -H we deduce that we only need to prove the previous state­
ment without the absolute value in the exponent. By Feynman-Kac formula and 
the variational formula for the largest eigenvalue of an operator, 

(4.7) 

In this formula, the supremum is taken over all densities f with respect to ilh and 
D(f) is the Dirichlet form 

D(f) = J ../l L../l dvh . 

We are now ready to integrate by parts the cylinder function V. The rest of 
the proof is similar to the proof of Lemma 3.10 and omitted for this reason. 0 

The same argument permits to deduce the following result. 

Lemma 4.8. For every continuous function H: [0, T) ~~, 

lim SUplE~N [liT dt H(t){pg( 7]t (0» - qg( 7]t (-1»} I] 0 . 
N-+oo 0 

The next result follows from Lemma 4.6 and Lemma 4.8. 

Corollary 4.9 . For every continuous function H: [0 , T) ~~, 

This concludes the proof of Theorem 4.2 under assumptions (IS1), (IS2) (IS3) . 
Assum ption (IS3) was needed only in the derivation of the estimates of the entropy 
and the Dirichlet form. The arguments presented in [LM] permit to deduce these 
estimates with assumption (IS2) in place of (IS3). This proves Theorem 4.2. 
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5. The asymmetric tagged particle. 
We prove in this section Theorems 1.1 and 1.2 through the hydrodynamic be­

havior of the inhomogeneous zero range processes considered in the previous two 
sections. 

We have seen in the fir~ section that the displacement of the asymmetric tagged 
particle corresponds in the zero range process to the total flux of particles through 
the origin. For this reason, we start deducing the total flux through the origin 
from the hydrodynamic limit proved in the previous two sections. 

Proposition 5.1. In the case p = 1, consider a sequence of probability measures 
J-lN satisfying assumptions (H1), (H2). Then, for every t ~ 0 and ~ > 0, 

J~ooIF:N[IN-1L:{77t(x)-77o(x)}-1°O du{p(t,u)-po(u)}I>~] = 0, (5.1) 
.,~o 

where P is the solution of (3.2). In the case p < 1, consider a sequence of probability 
measures J-lN satisfying assumptions (IS1), (IS2). Then, for every t ~ 0 and ~ > 0 
(5.1) holds, where P is now the solution of (4 .3). 

In the previous statement, as explained in section 1, the sum and the integral 
must be interpreted correctly. Proposition 5.1 follows from the hydrodynamic be­
havior of the inhomogeneous processes considered in section 3, 4 and the definition 
of the sum and the integral. 

Recall from section 1 that we denote by I the transformation that associates 
to each configuration (resp. continuous function, probability measure) of to, 1 }z. 
(the set of configurations of to, l}z with a particle at the origin) a configuration 
(resp. continuous function, probability measure) of NZ. Theorem 1.1 and 1.2 
follow from Proposition 5.1 if we prove the following proposition 

Proposition 5.2. Fix a sequence of initial states J-l:" (.) satisfying the assumptions 

of Theorem 1.1 or 1.2. The sequence TJ-l~(-) satisfy assumptions (H1), (H2) in 
the case p = 1 or (IS1) , (IS2) in the case p < 1. 

Proof. We start with the case p = 1. A simple computation shows that T trans­
forms the Bernoulli product measure J-lp in the product measure iit_p defined 
by (2.4). Fix a profile Po: 1R+ -+ [0,1] for which there exists (1' > 0 such that 
(1' ~ Po ~ 1 - (1' . Recall that we denote by J-l:"( .) the inhomogeneous product 
measure associated to Po : 

J-l~o{e ,e(x) = I} = po(x/N) 

for x > O. Denote by v;:;'O the probability measure on NN associated to J-l~(-) 
through the transformation T. We shall now show that v;:;'O fulfills assumptions 
(HI), (H2) . 

We first claim that if J-l is a product measure on to, 1 p". bounded above (resp. 
below) by J-lt for some 0 < p < 1, then IJ-l is bounded below (resp. above) by 
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iit_p· Here I't (resp. ii;!') stand for the restriction on N of the measures I'p (resp. 
iip). Notice that the inequalities are reversed by the application T To prove this 
claim, for x ~ 1, denote by "Yx the probability of finding a particle at x for the 
probability 1'. Assume, without loss of generality that "Yx ~ p. For j ~ 1, denote 
by Nj the position of the j-th particle at the right of the origin . Since "Yx ~ P for 
every x and 1', I'p are product measures, it is possible to couple I' and I'p in such 
a way that Ni ~ Nf and Nj+1 - Nj ~ Nf+l - Nf for all j ~ 1. In this formula, 
Nj (resp. Nf) stands for the position of the j-th particle under the distribution I' 
(resp. I-'p) . Applying the transformation I to this coupling measure, we construct 
a measure on NN x NN with first marginal equal to II-', second marginal equal 
to II-'t = iit-p and concentrated on configurations (7]1,7]2) below the diagonal. 
This shows that II-' ~ iit_ p, what concludes the proof of the claim. In particular, 
iit ~ v:'aO ~ iit-ufor every N ~ 1 and assumption (HI) is verified. 

Notice, however, that the claim "1-'1 ~ 1-'2 implies 11-'1 ~ 11-'2" is not correct. 
Consider, for instance, the configuration e, e such that 

e(x) = 1 if and only if x :I 1,2, 3 and e(x) = 1 if and only if x :I 1,3. 

In this case the deterministic measures <5e• are such .that <5e• ~ <5e but it is not 
correct that <5Te• is above <5Te" 

We turn now to the second assumption (H2). Recall from section 1 that we 
denote by 1l : ~+ -+ ~+, .1': ~+ -+ ~+ the functions defined by 

1l(A) = lA po(u) du , 
. 1 

.r(B) = po(1l-1(B)) 1. 

Here 1l- 1 stands for the inverse of the strictly increasing, absolutely continuous 
function 1t It follows from this definition that 

[B . 
Jo .r(u) du = 1l- 1(B) - B (5.2) 

for every B > O. In order to check (H2), we just need to show that under v:'aC)' 

[BN) 

N- 1 L 7](x) 
x=o 

(5 .3) 

converges in probability to foB .r(u)du for every B > O. Fix a positive integer n . 
The following inequalities state that for the exclusion process the total number of 
sites in An = {O, ... , n} is equal to the total number of particles plus the total 
number of holes (that corresponds to the total number of particles for the zero 
range process) 

n -1+2::=0 e(x) n 2::=0 e(x) 

L~(x) + L 7](Y) ~ n + 1 < L~(x) + L 7J(Y). 
y=o y=o 
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The convergence (5.3) follows from these inequalities, the fact that under the 
measure I-'~(-)' N- 1 LO$x$[nNje(X) converges to Jon PO(u) du and identity (5.2). 
Details are left to the reader. 

In exactly the same way, assumptions (lSI), (IS2) can be checked in the case 
p < 1. The only difference is that we assume in (lSI) that the sequence of initial 
measures is bounded below by an invariant measure iI~ which is inhomogeneous 
in space. This forces the initial profile Po to be bounded below by the function 
1{Ia(u) = (1- a)l{u < O} + [1- (q/p)a]l{u > O} for some 0 < a < 1. 0 

6. Einstein relation. 
We ' consider in this section initial profiles for which the solution of equation 

(1.4) is self scaling. For two fixed densities p_ and p+ consider, for instance, the 
initial condition poC) given by 

PO(u) = p+l{u ~ O} + p_l{y < O} . 

The the solution of (1.4) takes the form p(t, u) = cp(u/Vt), where cpO is the 
solution of 

- zcp'(z) = o;~o(cp(z)) , 
p~o(cp(O+)) = q~o(cp(O-)) , 

cp' (0+) cp' (0-) 
(l+cp(0+))2 (1 + cp(0-))2 ' 

cp(±oo) = P± . 

In this formula ~o(a) = a/(l + a). 
It easy to see that in this case Vt :::l v.../i where v is given by 

[+00 
v = Jo {p+ - cp(y)} dy . 

Moreover, since p+ = cp( 00), we may write the expression inside braces as 

(6.1) 

~y,oo) ozcp(z)dz. Performing an integration by parts and keeping in mind that cp 
is the solution of (6.1), we obtain that 

cp'(O+) 
v = 

(1 +cp(O+))2 

We now transform (6.1) in a linear equation through a Lagrangian change of 
coordinates. Define 

and set 

x(z) = l z (1 + cp(y)) dy 

1 
m(x) = 1 + cp(z(x)) 
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We leave to the reader to check that this transformation is in fact the inverse of 
the transformation described in (1.2). Moreover, a simple computation shows that 
m(z) is the solution of the linear equation 

m"(z) = -(z + v)m'(z) , 

_ m'(O+) _ m'(O-) 
- v - m(O+) - m(O-) , 

p(l- m(O+)) = q(l- m(O-)) , 
1 

m(±cx:» = o± = -1-- . 
+P± 

In fact (6.2) describes the self scaling solution of the Stefan problem: 

Otm·(z,t) = ~Orxm·(z,t), 
oxm·(Vt+,t) oxm·(Vt-,t) 

- Vt = = , 
m·(vt+, t) m·(vt-, t) 

p{l- m·(vt+, tn = q{l- m·(vt-, tn, 

m·(z,O) = o+l{z ~ O} + o_l{z < O}. 

(6.2) 

(6 .3) 

In other words, m(z/Vt) is the macroscopic profile of density as seen from the 
tagged asymmetric particle. 

The solution of (6.2) can be written as 

{ 
A+ + B+ l x e-(1/2)!I~-fJ!I dy 

m(z) = 0 x 

A_ + B_ 1 e-(1/2)!I~-tl!I dy 

for z > 0, 

for z < 0, 

where the parameters are related by the equations 

and 

J(V) = 1 - v 1+00 e-(1/2)!I~-tl!I dy . 

It follows from the previous identities that the parameters p, 0+, 0_ and v satisfy 
the equation 

( 0+ ) ( 0_) 
p 1- J(v) = q 1- J(-v) . (6.4) 

This equation was obtained heuristically by [BDMOj. In particular, we cannot 
write v as an explicit function of p, 0.\, 0_, but we can study some asymptotic 
relations. We consider three distinct asymptotics. 
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We first investigate the case of a constant initial profile: 0+ = 0_ = o. In this 
case we can write ° as an explicit function of p and v : 

J(v)J(-v) ° = (p - q) -.--'-'-,--'-~-:­
pJ(-v) - qJ(v) 

Elementary computations give the identity 

( _ ) 1- ° _ pJ(-v) - qJ(v) - (p - q)J(v)J(-v) 
p q 0 - J(v)J(-v) (6.5) 

For small asymmetry p - q, we have a small displacement v. Expanding J( .) 
around the origin we obtain that 

Replacing in (6.5) J(v) by its expansion gives, for fixed ° and small p - q, that 

{f1-0 
v = (p - q) --- + o(p - q) . 

11" 0 

This proves the validity of Einstein relation for small drifts. 
In the case 0+ :f. 0_ one can expand around the equilibrium, i.e., for small 

p(l- 0+) - q(l - 0_). The same expansions show that 

A third possible asymptotics is given when the initial profile is constant and the 
density ° = 0+ = 0_ is small . In this case, for a fixed drift p-q, the displacement 
v is very large. Asymptotically, for Ivl close to 00, a simple computation shows 
that 

1 
J(v) - 2" ' v 

J(-v) _ vetJ~/2~. 

Using these expansions in (6.4) one obtains that 

f2-q (1) v- --+0--
0+ ..,fC4 . 

7. Surface motion in a Potts model. 
We prove in this section Theorem 1.4. The spin flip dynamics induced by the 

generator £6P on M coincides with the zero range dynamics investigated in section 
3. We first define a correspondence between configurations f such that f(0) = 0 
and configurations on~N. Fix a monotone function fin M such that f(0) = O. For 
z ~ 0, set 

'7(z) = f(z + 1)- Hz) . (7.1) 
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Recall that for t ~ 0, ft = fu,. It is easy to check that '1t, defined by '1t(x) = 
ft(x+1)-ft(x), evolves according to the generator L introduced in (3.1) with jump 
rate g(k) = l{k ~ 1}. (There is a slight difference. For the zero range process 
investigated in section 3, a particle at the origin is killed at rate 1 {'1(0) ~ I}, 
while in the model we now consider it is killed at rate (1/2)1{'1(0) ~ 1} . This 
microscopic difference, however, does not modify the macroscopic behavior of the 
system. Details are left to the reader). 

Fix a sequence of probability measures m N satisfying the assumptions of The­
orem 1.4. Denote by J1.N the sequence of 21mN introduced in section 1. Clearly, 
by construction, the sequence J1.N satisfy assumptions (HI), (H2) of section 3. In 
particular, since it follows from (7.1) that 

ft(O) - fo(O) = L'{'1o(x) - '1t(x)} , 
:t'~o 

from Proposition 5.1 we obtain that for each t ~ 0, N-1ftN'(O) converges in 
probability to Vt defined by (1.5), where p is the solution of (1.3) with initial 
condition Ao instead of F +. 

Fix now a smooth function G: IR+ -t lR with compact support. By definition of 

N- 1 E G(x/N)N-1[ft(x) - ft(0)) = N- 1 E {N- 1 E G(y/N) }'1t(x) . 
:t'~o :t'~o y~:t'+l 

It follows therefore from Theorem 3.1 that for each t ~ 0, 

N-1 E G(x/N)N-1[ftN'(X) - ftN'(O)] 
:t'~o 

converges in probability, as N t 00, to 

f duG(u)A(t,u), 
J ... + 

where A(t , u) = IoU p(t, v)dv and p(t, u) is the solution of (3.2). To conclude the 
proof of Theorem 1.4, it remains to check that A is the solution of (1.9) but this 
follows straightforwardly from the explicit form A and the fact that p(t, u) is the 
solution of (3.2). 

8. Appendix: Uniqueness. 
Case p = 1. This is an extension to infinite volume of an argument presented in 
[ELS2] . Fix a weak solution p(t, u) of the differential equation (3.2) . Since p(t,·) 
is in LfoAlR+), we may define Rt : lR! -t lR by 

Rt(u, v) = it! p(t, w) dw . (8.1) 
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Denote by [.,.] the inner product in L2(lR~). Fix a smooth function H: IR~ -+ IR 
with compact support. Changing the order of summations we obtain that 

where 

[Rt,H] = [ dup(t,w)h(w), 
J,,+ 

h(w) = l w 
du i oo 

dv H(u, v) - i oo 
du l w 

dv H(u, v) . 

(8.2) 

Notice that h is a smooth function with compact support that vanishes at the 
origin. Moreover , its derivative is given by 

h'(w) = 100 
du {H(w,u) - H(u,w)} . 

Therefore, in virtue of (8 .2), property (c) of weak solutions and a change of vari­
ables, for every smooth function H with compact support 

[Rt,H] = [Ro , H] + r ds [ du [ dvH(u,v) {ovcl>(p(s,v)) -oucl>(p(s,u))} . 
Jo J ... + J ... + 

In particular, we have that 

Rt(u , v)-Ro(u ,v) = 1t ds{ovcl>(p(s,v)) -oucl>(p(s,u))} (8 .3) 

for almost all (u ,v) in 1R~. 
Consider now two solutions pl , p2 of equation (3.2), denote by Rt, R~ the 

respecti ve functions associated to pl, p2, through (8.1) and set Wt = Ri - R~ , 
Pt = p; - P;' Denote by [., ·]e the inner product on L2(1R~) associated to the 
measure e-(u+vjdudv. In view of property (a) of weak solutions and identity (8.3), 
R: [0, T] -+ L2(1R~, e-(u+vjdudv) is almost everywhere differentiable. Therefore, 

![Wt , Wtle = 2 J du J dve-(u+vjWt(u,v){ov~e(v) - ou~e(u)} , 

where ~t (v) stands for cI>(pl (t, v)) - cI>(p2 (t, v)). An integration by parts gives that 
the right hand side is equal to 

because f du exp{ -u} = 1. By Schwarz inequality, the second term is bounded 
above by 

IIcI>'lloo [Wt , Wt]e + IlcI>~lIoo 1+ due-U(~t(u)2 
~ IIcI>'lIoo[Wt , Wt]e + [ du e-U~t(u)p(t, u) 

J ... + 
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because ~ is an increasing function with a bounded first dei-ivative. Adding this 
expression to the first term of(8.4), we obtain that the time derivative of [Wt, Wt}e 
is bounded above by 

1I~/lIoo[Wt, Wt]e - r du e-u<l>t{u)p(t, u) ~ 11~/lIoo[Wt, Wtle 
JJl+ 

because ~ is non decreasing. By Gronwall inequality, we deduce that [Wt , Wt}e 
is bounded above by [Wo, WO]e exp{II~/lIoot}, what concludes the proof of the 
uniqueness of weak solutions of equation (3.2) . 

The case p < 1. The argument is similar to the one· presented for p = 1. For 
t ~ 0, define Rt : ~2 ~ ~+ as in (8.1). It can be shown that 

IMu, v) - Ro(u, v) = It ds {av~(p(s, v)) - au~(p(s, u))} 

for almost all (u, v) in ~2 . Consider two solutions of equation (4.3). Denote by 
m(du) = m(u)du the absolutely continuous measure with density m(u) = p1{u < 
0}+q1{ u > O} and fix a smooth function 8: ~ ~ lR+ such that 0(0) = 0, 8(u) = lui 
for u large enough and fm(du)exp{-8(u)} = 1. Let ["']m stand for the inner 
product in L2(~2) with respect to the measure m(du)m(dv)exp{-8(u) - 8(v)} . 
Fix two solutions pI, p2 of equation (4.3), denote by R;, R; the respective func­
tions associated to pI, p2, through (8.1) and set Wt = R; - R;. With the same 
arguments presen.ted above one can show that [Wt, Wt]m is bounded above by 
[Wo, WO]m exp{C(O, 11~/lIoo)t}. In this deduction the use of the measure m(du) 
instead of the Lebesgue measure is fundamental in the integration by parts per­
formed in (8.4) for the boundary term to cancel. 
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