91 research outputs found
Cataract, abnormal electroretinogram and visual evoked potentials in a child with SMA-LED2 - extending the phenotype.
This case report describes a girl who presented antenatal arthrogryposis and postnatal hypotonia, generalized and respiratory weakness, joint deformities particularly affecting the lower limbs and poor swallow. By 5 months, cataracts, abnormal electroretinograms, visual evoked potentials and global developmental impairments were recognized. No causative variants were identified on targeted gene panels. After her unexpected death at 11 months, gene-agnostic trio whole exome sequencing revealed a likely pathogenic de novo BICD2 missense variant, NM_001003800.1, c.593T>C, p.(Leu198Pro), confirming the diagnosis of spinal muscular atrophy lower extremity predominant type 2 (SMA-LED2). We propose that cataracts and abnormal electroretinograms are novel features of SMA-LED2
Measurement of the Luminosity in the ZEUS Experiment at HERA II
The luminosity in the ZEUS detector was measured using photons from electron
bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher
luminosity. At the same time the luminosity-measuring system of the ZEUS
experiment was modified to tackle the expected higher photon rate and
synchrotron radiation. The existing lead-scintillator calorimeter was equipped
with radiation hard scintillator tiles and shielded against synchrotron
radiation. In addition, a magnetic spectrometer was installed to measure the
luminosity independently using photons converted in the beam-pipe exit window.
The redundancy provided a reliable and robust luminosity determination with a
systematic uncertainty of 1.7%. The experimental setup, the techniques used for
luminosity determination and the estimate of the systematic uncertainty are
reported.Comment: 25 pages, 11 figure
The Cosmological Probability Density Function for Bianchi Class A Models in Quantum Supergravity
Nicolai's theorem suggests a simple stochastic interpetation for
supersymmetric Euclidean quantum theories, without requiring any inner product
to be defined on the space of states. In order to apply this idea to
supergravity, we first reduce to a one-dimensional theory with local
supersymmetry by the imposition of homogeneity conditions. We then make the
supersymmetry rigid by imposing gauge conditions, and quantise to obtain the
evolution equation for a time-dependent wave function. Owing to the inclusion
of a certain boundary term in the classical action, and a careful treatment of
the initial conditions, the evolution equation has the form of a Fokker-Planck
equation. Of particular interest is the static solution, as this satisfies all
the standard quantum constraints. This is naturally interpreted as a
cosmological probability density function, and is found to coincide with the
square of the magnitude of the conventional wave function for the wormhole
state.Comment: 22 pages, Late
Luminometer for the future International Linear Collider - simulation and beam test results
LumiCal will be the luminosity calorimeter for the proposed International
Large Detector of the International Linear Collider (ILC). The ILC physics
program requires the integrated luminosity to be measured with a relative
precision on the order of 10e-3, or 10e-4 when running in GigaZ mode.
Luminosity will be determined by counting Bhabha scattering events coincident
in the two calorimeter modules placed symmetrically on opposite sides of the
interaction point. To meet these goals, the energy resolution of the
calorimeter must be better than 1.5% at high energies. LumiCal has been
designed as a 30-layer sampling calorimeter with tungsten as the passive
material and silicon as the active material. Monte Carlo simulation using the
Geant4 software framework has been used to identify design elements which
adversely impact energy resolution and correct for them without loss of
statistics. BeamCal, covering polar angles smaller than LumiCal, will serve for
beam tuning, luminosity optimisation and high energy electron detection.
Secondly, prototypes of the sensors and electronics for both detectors have
been evaluated during beam tests, the results of which are also presented here.Comment: Technology and Instrumentation in Particle Physics 2011, Chicago, IL,
USA. Presented June 11, 2011, and submitted to Physics Procedi
Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector
Detector-plane prototypes of the very forward calorimetry of a future
detector at an e+e- collider have been built and their performance was measured
in an electron beam. The detector plane comprises silicon or GaAs pad sensors,
dedicated front-end and ADC ASICs, and an FPGA for data concentration.
Measurements of the signal-to-noise ratio and the response as a function of the
position of the sensor are presented. A deconvolution method is successfully
applied, and a comparison of the measured shower shape as a function of the
absorber depth with a Monte-Carlo simulation is given.Comment: 25 pages, 32 figures, revised version following comments from
referee
ECFA Detector R&D Panel, Review Report
Two special calorimeters are foreseen for the instrumentation of the very
forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to
measure the rate of low angle Bhabha scattering events with a precision better
than 10 at the ILC and 10 at CLIC, and a low polar-angle
calorimeter (BeamCal). The latter will be hit by a large amount of
beamstrahlung remnants. The intensity and the spatial shape of these
depositions will provide a fast luminosity estimate, as well as determination
of beam parameters. The sensors of this calorimeter must be radiation-hard.
Both devices will improve the e.m. hermeticity of the detector in the search
for new particles. Finely segmented and very compact electromagnetic
calorimeters will match these requirements. Due to the high occupancy, fast
front-end electronics will be needed. Monte Carlo studies were performed to
investigate the impact of beam-beam interactions and physics background
processes on the luminosity measurement, and of beamstrahlung on the
performance of BeamCal, as well as to optimise the design of both calorimeters.
Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and
prototypes are available. Prototypes of sensor planes fully assembled with
readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure
Essential Emergency and Critical Care: a consensus among global clinical experts.
BACKGROUND: Globally, critical illness results in millions of deaths every year. Although many of these deaths are potentially preventable, the basic, life-saving care of critically ill patients are often overlooked in health systems. Essential Emergency and Critical Care (EECC) has been devised as the care that should be provided to all critically ill patients in all hospitals in the world. EECC includes the effective care of low cost and low complexity for the identification and treatment of critically ill patients across all medical specialties. This study aimed to specify the content of EECC and additionally, given the surge of critical illness in the ongoing pandemic, the essential diagnosis-specific care for critically ill patients with COVID-19. METHODS: In a Delphi process, consensus (>90% agreement) was sought from a diverse panel of global clinical experts. The panel iteratively rated proposed treatments and actions based on previous guidelines and the WHO/ICRC's Basic Emergency Care. The output from the Delphi was adapted iteratively with specialist reviewers into a coherent and feasible package of clinical processes plus a list of hospital readiness requirements. RESULTS: The 269 experts in the Delphi panel had clinical experience in different acute medical specialties from 59 countries and from all resource settings. The agreed EECC package contains 40 clinical processes and 67 requirements, plus additions specific for COVID-19. CONCLUSION: The study has specified the content of care that should be provided to all critically ill patients. Implementing EECC could be an effective strategy for policy makers to reduce preventable deaths worldwide
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
- …