59 research outputs found

    Brain correlates of spike and wave discharges in GLUT1 deficiency syndrome

    Get PDF
    Purpose To provide imaging biomarkers of generalized spike-and-wave discharges (GSWD) in patients with GLUT1 deficiency syndrome (GLUT1DS). Methods Eighteen GLUT1DS patients with pathogenetic mutation in SLC2A1 gene were studied by means of Video-EEG simultaneously recorded with functional MRI (VideoEEG-fMRI). A control group of sex and age-matched patients affected by Genetic Generalized Epilepsy (GGE) with GSWD were investigated with the same protocol. Within and between groups comparison was performed as appropriated. For GLUT1DS, correlations analyses between the contrast of interest and the main clinical measurements were provided. Results EEG during fMRI revealed interictal GSWD in 10 GLUT1DS patients. Group-level analysis showed BOLD signal increases at the premotor cortex and putamen. With respect to GGE, GLUT1DS patients demonstrated increased neuronal activity in the putamen, precuneus, cingulate cortex, SMA and paracentral lobule. Whole-brain correlation analyses disclosed a linear relationship between the GSWD-related BOLD changes and the levels of glycorrhachia at diagnosis over the sensory-motor cortex and superior parietal lobuli. Conclusion The BOLD dynamics related to GSWD in GLUT1DS are substantially different from typical GGE showing the former an increased activity in the premotor-striatal network and a decrease in the thalamus. The revealed hemodynamic maps might represent imaging biomarkers of GLUT1DS, being potentially useful for a precocious diagnosis of this genetic disorder

    Clinical scenarios of hypertrophic cardiomyopathy-related mortality : Relevance of age and stage of disease at presentation

    Get PDF
    The evolving epidemiology of hypertrophic cardiomyopathy (HCM) has progressively changed our perception of HCM-related mortality. However, recent studies detailing individual causes of death based on age and clinical setting are lacking. Thus, the present study aimed to describe the modes of death in a consecutive cohort of HCM patients based on presenting clinical features and stage of disease.By retrospective analysis of a large HCM cohort, we identified 161 patients with >1 year follow-up who died between 2000 and 2020 and thoroughly investigated their modes of death. HCM stage at presentation was defined as "classic", "adverse remodeling" or "overt dysfunction".Of the 161 patients, 103 (64%) died of HCM-related causes, whereas 58 (36%) died of non-HCM-related causes. Patients who died of HCM-related causes were younger than those who died of non-HCM related causes. The most common cause of death was heart failure (HF). Sudden cardiac death (SCD) ranked third, after non cardiovascular death, and mostly occurred in young individuals. The proportion of HF related death and SCD per stage of disease was 14% and 27% in "classic", 38% and 21% in "adverse remodeling" and 74% and 10% in "overt dysfunction".Most HCM patients die due to complications of their own disease, mainly in the context of HF. While SCD tends to be juvenile, HF related deaths often occur in age groups no longer amenable to cardiac transplant. Modes of death vary with the stage of disease, with SCD becoming less prevalent in more advanced phases, when competitive risk of HF becomes overwhelming

    Microbial dynamics in rearing trials of Hermetia illucens larvae fed coffee silverskin and microalgae

    Get PDF
    In the present study, Hermetia illucens larvae were reared on a main rearing substrate composed of a coffee roasting byproduct (coffee silverskin, Cs) enriched with microalgae (Schizochytrium limacinum or Isochrysis galbana) at various substitution levels. The microbial diversity of the rearing substrates, larvae, and frass (excrement from the larvae mixed with the substrate residue) were studied by the combination of microbial culturing on various growth media and metataxonomic analysis (Illumina sequencing). High counts of total mesophilic aerobes, bacterial spores, presumptive lactic acid bacteria, coagulase-positive cocci, and eumycetes were detected. Enterobacteriaceae counts were low in the rearing diets, whereas higher counts of this microbial family were observed in the larvae and frass. The microbiota of the rearing substrates was characterized by the presence of lactic acid bacteria, including the genera Lactobacillus, Leuconostoc and Weissella. The microbiota of the H. illucens larvae fed Cs was characterized by the dominance of Paenibacillus. H. illucens fed diets containing I. galbana were characterized by the presence of Enterococcus, Lysinibacillus, Morganella, and Paenibacillus, depending on the algae inclusion level, while H. illucens fed diets containing S. limacinum were characterized by high relative abundances of Brevundimonas, Enterococcus, Paracoccus, and Paenibacillus, depending on the algae inclusion level. Brevundimonas and Alcaligenes dominated in the frass from larvae fed I. galbana; the predominance of Brevundimonas was also observed in the frass from larvae fed Schyzochitrium-enriched diets. Based on the results of the present study, an effect of algae nutrient bioactive substances (e.g. polysaccharides, high-unsaturated fatty acids, taurine, carotenoids) on the relative abundance of some of the bacterial taxa detected in larvae may be hypothesized, thus opening new intriguing perspectives for the control of the entomopathogenic species and foodborne human pathogens potentially occurring in edible insects. Further studies are needed to support this hypothesis. Finally, new information on the microbial diversity occurring in insect frass was also obtained

    Effects of Mavacamten on Measures of Cardiopulmonary Exercise Testing Beyond Peak Oxygen Consumption: A Secondary Analysis of the EXPLORER-HCM Randomized Trial

    Get PDF
    IMPORTANCE: Mavacamten, a cardiac myosin inhibitor, improved peak oxygen uptake (pVO2) in patients with symptomatic obstructive hypertrophic cardiomyopathy (HCM) in the EXPLORER-HCM study. However, the full extent of mavacamten's effects on exercise performance remains unclear. OBJECTIVE: To investigate the effect of mavacamten on exercise physiology using cardiopulmonary exercise testing (CPET). DESIGN, SETTING, AND PARTICIPANTS: Exploratory analyses of the data from the EXPLORER-HCM study, a randomized, double-blind, placebo-controlled, phase 3 trial that was conducted in 68 cardiovascular centers in 13 countries. In total, 251 patients with symptomatic obstructive HCM were enrolled. INTERVENTIONS: Patients were randomly assigned in a 1:1 ratio to mavacamten or placebo. MAIN OUTCOMES AND MEASURES: The following prespecified exploratory cardiovascular and performance parameters were assessed with a standardized treadmill or bicycle ergometer test protocol at baseline and week 30: carbon dioxide output (VCO2), minute ventilation (VE), peak VE/VCO2 ratio, ventilatory efficiency (VE/VCO2 slope), peak respiratory exchange ratio (RER), peak circulatory power, ventilatory power, ventilatory threshold, peak metabolic equivalents (METs), peak exercise time, partial pressure of end-tidal carbon dioxide (PETCO2), and VO2/workload slope. RESULTS: Two hundred fifty-one patients were enrolled. The mean (SD) age was 58.5 (11.9) years and 59% of patients were male. There were significant improvements with mavacamten vs placebo in the following peak-exercise CPET parameters: peak VE/VCO2 ratio (least squares [LS] mean difference, -2.2; 95% CI, -3.05 to -1.26; P < .001), peak METs (LS mean difference, 0.4; 95% CI, 0.17-0.60; P < .001), peak circulatory power (LS mean difference, 372.9 mL/kg/min × mm Hg; 95% CI, 153.12-592.61; P = .001), and peak PETCO2 (LS mean difference, 2.0 mm Hg; 95% CI, 1.12-2.79; P < .001). Mavacamten also improved peak exercise time compared with placebo (LS mean difference, 0.7 minutes; 95% CI, 0.13-1.24; P = .02). There was a significant improvement in nonpeak-exercise CPET parameters, such as VE/VCO2 slope (LS mean difference, -2.6; 95% CI, -3.58 to -1.52; P < .001) and ventilatory power (LS mean difference, 0.6 mm Hg; 95% CI, 0.29-0.90; P < .001) favoring mavacamten vs placebo. CONCLUSIONS AND RELEVANCE: Mavacamten improved a range of CPET parameters beyond pVO2, indicating consistent and broad benefits on maximal exercise capacity. Although improvements in peak-exercise CPET parameters are clinically meaningful, the favorable effects of mavacamten on submaximal exertional tolerance provide further insights into the beneficial impact of mavacamten in patients with obstructive HCM. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03470545

    Mavacamten Treatment for Symptomatic Obstructive Hypertrophic Cardiomyopathy: Interim Results From the MAVA-LTE Study, EXPLORER-LTE Cohort.

    Get PDF
    This study was funded by Bristol Myers Squibb, Princeton, New Jersey, USA. Bristol Myers Squibb’s policy on data sharing is available online at https://www.bms.com/researchers-and-partners/clinicaltrials-and-research/disclosure-commitment.html. Dr Rader has received consulting fees from Medtronic, Bristol Myers Squibb, and ReCor Medical. Dr Ore˛ziak has received personal fees from Bristol Myers Squibb. Dr Saberi has received personal fees from Bristol Myers Squibb. Dr Fermin has received consulting fees from Alnylam, Eidos Therapeutics, Bristol Myers Squibb, and Pfizer. Dr Wheeler has received personal fees and research support from Bristol Myers Squibb. Dr Garcia-Pavia has received consulting and speaking fees from Bristol Myers Squibb, Rocket Pharmaceuticals, and Cytokinetics and speaking fees from Bristol Myers Squibb and Cytokinetics. Dr Zwas has received personal fees from Bristol Myers Squibb. Dr Masri has received grants from Akcea, Pfizer, and Ultromics and consulting fees from Alnylam, Cytokinetics, Eidos Therapeutics, Ionis, and Pfizer. Dr Owens has received consulting fees from Bristol Myers Squibb, Cytokinetics, and Pfizer. Dr Hegde serves on the faculty of the Cardiovascular Imaging Core Laboratory at Brigham and Women’s Hospital, and her institution has received payments for her consulting work from Bristol Myers Squibb. Dr Seidler has received consulting fees or honoraria for lectures from Bristol Myers Squibb and Cytokinetics. Dr Balaratnam and Dr Sehnert are employees of Bristol Myers Squibb and own stock of Bristol Myers Squibb. Shawna Fox is an employee of IQVIA, a partner providing statistics services to Bristol Myers Squibb. Dr Olivotto has received grants from Amicus, Boston Scientific, Bristol Myers Squibb, Cytokinetics, Genzyme, and Menarini International and consulting fees from Amicus, Cytokinetics, Genzyme, MS Pharma, Rocket Pharmaceuticals, and Tenaya Therapeutics.BACKGROUND Data assessing the long-term safety and efficacy of mavacamten treatment for symptomatic obstructive hypertrophic cardiomyopathy are needed. OBJECTIVES The authors sought to evaluate interim results from the EXPLORER-Long Term Extension (LTE) cohort of MAVA-LTE (A Long-Term Safety Extension Study of Mavacamten in Adults Who Have Completed EXPLORER-HCM; NCT03723655). METHODS After mavacamten or placebo withdrawal at the end of the parent EXPLORER-HCM (Clinical Study to Evaluate Mavacamten [MYK-461] in Adults With Symptomatic Obstructive Hypertrophic Cardiomyopathy; NCT03470545), patients could enroll in MAVA-LTE. Patients received mavacamten 5 mg once daily; adjustments were made based on site-read echocardiograms. RESULTS Between April 9, 2019, and March 5, 2021, 231 of 244 eligible patients (94.7%) enrolled in MAVA-LTE (mean age: 60 years; 39% female). At data cutoff (August 31, 2021) 217 (93.9%) remained on treatment (median time in study: 62.3 weeks; range: 0.3-123.9 weeks). At 48 weeks, patients showed improvements in left ventricular outflow tract (LVOT) gradients (mean change ± SD from baseline: resting: -35.6 ± 32.6 mm Hg; Valsalva: -45.3 ± 35.9 mm Hg), N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels (median: -480 ng/L; Q1-Q3: -1,104 to -179 ng/L), and NYHA functional class (67.5% improved by ≥1 class). LVOT gradients and NT-proBNP reductions were sustained through 84 weeks in patients who reached this timepoint. Over 315 patient-years of exposure, 8 patients experienced an adverse event of cardiac failure, and 21 patients had an adverse event of atrial fibrillation, including 11 with no prior history of atrial fibrillation. Twelve patients (5.2%) developed transient reductions in site-read echocardiogram left ventricular ejection fraction of <50%, resulting in temporary treatment interruption; all recovered. Ten patients discontinued treatment due to treatment-emergent adverse events. CONCLUSIONS Mavacamten treatment showed clinically important and durable improvements in LVOT gradients, NT-proBNP levels, and NYHA functional class, consistent with EXPLORER-HCM. Mavacamten treatment was well tolerated over a median 62-week follow-up.S

    Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation

    Get PDF
    PURPOSE: Variants in MYBPC3 causing loss of function are the most common cause of hypertrophic cardiomyopathy (HCM). However, a substantial number of patients carry missense variants of uncertain significance (VUS) in MYBPC3. We hypothesize that a structural-based algorithm, STRUM, which estimates the effect of missense variants on protein folding, will identify a subgroup of HCM patients with a MYBPC3 VUS associated with increased clinical risk. METHODS: Among 7,963 patients in the multicenter Sarcomeric Human Cardiomyopathy Registry (SHaRe), 120 unique missense VUS in MYBPC3 were identified. Variants were evaluated for their effect on subdomain folding and a stratified time-to-event analysis for an overall composite endpoint (first occurrence of ventricular arrhythmia, heart failure, all-cause mortality, atrial fibrillation, and stroke) was performed for patients with HCM and a MYBPC3 missense VUS. RESULTS: We demonstrated that patients carrying a MYBPC3 VUS predicted to cause subdomain misfolding (STRUM+, ΔΔG ≤ −1.2 kcal/mol) exhibited a higher rate of adverse events compared with those with a STRUM- VUS (hazard ratio = 2.29, P = 0.0282). In silico saturation mutagenesis of MYBPC3 identified 4,943/23,427 (21%) missense variants that were predicted to cause subdomain misfolding. CONCLUSION: STRUM identifies patients with HCM and a MYBPC3 VUS who may be at higher clinical risk and provides supportive evidence for pathogenicity

    Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients with Hypertrophic Cardiomyopathy

    Get PDF
    Background - Pathogenic variants in MYBPC3, encoding cardiac MyBP-C, are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped HCM cohorts have precluded detailed genotype-phenotype correlations. Methods - Patients with HCM and MYBPC3 variants were identified from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Variant types and locations were analyzed, morphologic severity was assessed, and time-event analysis was performed (composite clinical outcome of sudden death, class III/IV heart failure, LVAD/transplant, atrial fibrillation). For selected missense variants falling in enriched domains, myofilament localization and degradation rates were measured in vitro. Results - Among 4,756 genotyped HCM patients in SHaRe, 1,316 patients were identified with adjudicated pathogenic truncating (N=234 unique variants, 1047 patients) or non-truncating (N=22 unique variants, 191 patients) variants in MYBPC3. Truncating variants were evenly dispersed throughout the gene, and hypertrophy severity and outcomes were not associated with variant location (grouped by 5' - 3' quartiles or by founder variant subgroup). Non-truncating pathogenic variants clustered in the C3, C6, and C10 domains (18 of 22, 82%, p<0.001 vs. gnomAD common variants) and were associated with similar hypertrophy severity and adverse event rates as observed with truncating variants. MyBP-C with variants in the C3, C6, and C10 domains was expressed in rat ventricular myocytes. C10 mutant MyBP-C failed to incorporate into myofilaments and degradation rates were accelerated by ~90%, while C3 and C6 mutant MyBP-C incorporated normally with degradation rate similar to wild-type. Conclusions - Truncating variants account for 91% of MYBPC3 pathogenic variants and cause similar clinical severity and outcomes regardless of location, consistent with locus-independent loss-of-function. Non-truncating MYBPC3 pathogenic variants are regionally clustered, and a subset also cause loss-of-function through failure of myofilament incorporation and rapid degradation. Cardiac morphology and clinical outcomes are similar in patients with truncating vs. non-truncating variants

    Hypertrophic Cardiomyopathy with Left Ventricular Systolic Dysfunction: Insights from the SHaRe Registry

    Get PDF
    Background: The term "end stage" has been used to describe hypertrophic cardiomyopathy (HCM) with left ventricular systolic dysfunction (LVSD), defined as occurring when left ventricular ejection fraction is <50%. The prognosis of HCM-LVSD has reportedly been poor, but because of its relative rarity, the natural history remains incompletely characterized. Methods: Data from 11 high-volume HCM specialty centers making up the international SHaRe Registry (Sarcomeric Human Cardiomyopathy Registry) were used to describe the natural history of patients with HCM-LVSD. Cox proportional hazards models were used to identify predictors of prognosis and incident development. Results: From a cohort of 6793 patients with HCM, 553 (8%) met the criteria for HCM-LVSD. Overall, 75% of patients with HCM-LVSD experienced clinically relevant events, and 35% met the composite outcome (all-cause death [n=128], cardiac transplantation [n=55], or left ventricular assist device implantation [n=9]). After recognition of HCM-LVSD, the median time to composite outcome was 8.4 years. However, there was substantial individual variation in natural history. Significant predictors of the composite outcome included the presence of multiple pathogenic/likely pathogenic sarcomeric variants (hazard ratio [HR], 5.6 [95% CI, 2.3-13.5]), atrial fibrillation (HR, 2.6 [95% CI, 1.7-3.5]), and left ventricular ejection fraction <35% (HR, 2.0 [95% CI, 1.3-2.8]). The incidence of new HCM-LVSD was ≈7.5% over 15 years. Significant predictors of developing incident HCM-LVSD included greater left ventricular cavity size (HR, 1.1 [95% CI, 1.0-1.3] and wall thickness (HR, 1.3 [95% CI, 1.1-1.4]), left ventricular ejection fraction of 50% to 60% (HR, 1.8 [95% CI, 1.2, 2.8]-2.8 [95% CI, 1.8-4.2]) at baseline evaluation, the presence of late gadolinium enhancement on cardiac magnetic resonance imaging (HR, 2.3 [95% CI, 1.0-4.9]), and the presence of a pathogenic/likely pathogenic sarcomeric variant, particularly in thin filament genes (HR, 1.5 [95% CI, 1.0-2.1] and 2.5 [95% CI, 1.2-5.1], respectively). Conclusions: HCM-LVSD affects ≈8% of patients with HCM. Although the natural history of HCM-LVSD was variable, 75% of patients experienced adverse events, including 35% experiencing a death equivalent an estimated median time of 8.4 years after developing systolic dysfunction. In addition to clinical features, genetic substrate appears to play a role in both prognosis (multiple sarcomeric variants) and the risk for incident development of HCM-LVSD (thin filament variants)

    Left Ventricular Systolic Dysfunction in Patients Diagnosed with Hypertrophic Cardiomyopathy during Childhood:Insights from the SHaRe Registry

    Get PDF
    BACKGROUND: The development of left ventricular systolic dysfunction (LVSD) in hypertrophic cardiomyopathy (HCM) is rare but serious and associated with poor outcomes in adults. Little is known about the prevalence, predictors, and prognosis of LVSD in patients diagnosed with HCM as children. METHODS:Data from patients with HCM in the international, multicenter SHaRe (Sarcomeric Human Cardiomyopathy Registry) were analyzed. LVSD was defined as left ventricular ejection fraction &lt;50% on echocardiographic reports. Prognosis was assessed by a composite of death, cardiac transplantation, and left ventricular assist device implantation. Predictors of developing incident LVSD and subsequent prognosis with LVSD were assessed using Cox proportional hazards models. RESULTS: We studied 1010 patients diagnosed with HCM during childhood (&lt;18 years of age) and compared them with 6741 patients with HCM diagnosed as adults. In the pediatric HCM cohort, median age at HCM diagnosis was 12.7 years (interquartile range, 8.0-15.3), and 393 (36%) patients were female. At initial SHaRe site evaluation, 56 (5.5%) patients with childhood-diagnosed HCM had prevalent LVSD, and 92 (9.1%) developed incident LVSD during a median follow-up of 5.5 years. Overall LVSD prevalence was 14.7% compared with 8.7% in patients with adult-diagnosed HCM. Median age at incident LVSD was 32.6 years (interquartile range, 21.3-41.6) for the pediatric cohort and 57.2 years (interquartile range, 47.3-66.5) for the adult cohort. Predictors of developing incident LVSD in childhood-diagnosed HCM included age &lt;12 years at HCM diagnosis (hazard ratio [HR], 1.72 [CI, 1.13-2.62), male sex (HR, 3.1 [CI, 1.88-5.2), carrying a pathogenic sarcomere variant (HR, 2.19 [CI, 1.08-4.4]), previous septal reduction therapy (HR, 2.34 [CI, 1.42-3.9]), and lower initial left ventricular ejection fraction (HR, 1.53 [CI, 1.38-1.69] per 5% decrease). Forty percent of patients with LVSD and HCM diagnosed during childhood met the composite outcome, with higher rates in female participants (HR, 2.60 [CI, 1.41-4.78]) and patients with a left ventricular ejection fraction &lt;35% (HR, 3.76 [2.16-6.52]). CONCLUSIONS: Patients with childhood-diagnosed HCM have a significantly higher lifetime risk of developing LVSD, and LVSD emerges earlier than for patients with adult-diagnosed HCM. Regardless of age at diagnosis with HCM or LVSD, the prognosis with LVSD is poor, warranting careful surveillance for LVSD, especially as children with HCM transition to adult care.</p
    corecore