2,880 research outputs found

    The meanfield limit of a network of Hopfield neurons with correlated synaptic weights

    Get PDF
    We study the asymptotic behaviour for asymmetric neuronal dynamics in a network of Hopfield neurons. The randomness in the network is modelled by random couplings which are centered Gaussian correlated random variables. We prove that the annealed law of the empirical measure satisfies a large deviation principle without any condition on time. We prove that the good rate function of this large deviation principle achieves its minimum value at a unique Gaussian measure which is not Markovian. This implies almost sure convergence of the empirical measure under the quenched law. We prove that the limit equations are expressed as an infinite countable set of linear non Markovian SDEs.Comment: 102 page

    Numerical modeling of underwater parametric propagation to detect buried objects

    Get PDF
    In underwater acoustics, detection of buried objects in sediments (cables, mines,…) is a complex problem. One reason is that acoustic attenuation in these sediments increases with frequency. To ensure sufficient penetration depth in marine sediments, low frequencies have to be used, implying a low resolution. A solution proposed to solve this problem is the parametric emission based on the nonlinear properties of the propagation medium. This method can generate a low frequency wave from two directional high frequencies beams. The parametric propagation is simulated in seawater and marine sediments. The model developed is based on the fractional-step numerical method introduced by Christopher and Parker [1]. In this method, the normal particle velocity is calculated plane by plane from the surface of the transducer to a specified distance. The effects of nonlinearity, attenuation and diffraction are calculated independently for each spatial step. Moreover, to reduce the number of spatial steps, a second order operator splitting scheme is used. The diffraction computation is based on a method of angular spectrum in the frequency domain where the field across a source plane is described by a spatial frequency distribution. To improve code stability, the effects of nonlinearity and attenuation are calculated and associated in shorter propagation substeps. At the interface between water and marine sediments, the transmission conditions are applied. Several tests have been carried out in different configurations (changing the primary frequencies, the parametric frequency, the source geometry, the inclination of the source with the interface, the focal distance,…). The 3D velocity field is calculated in each case, thereby allowing to know the directivity of the source, the velocity amplitude in sediments and the performance

    Statistical identification of geometric parameters for high speed train catenary

    Get PDF
    Pantograph/catenary interaction is known to be strongly dependent on the static geometry of the catenary, this research thus seeks to build a statistical model of this geometry. Sensitivity analyses provide a selection of relevant parameters affecting the geometry. After correction for the dynamic nature of the measurement, provide a database of measurements. One then seeks to solve the statistical inverse problem using the maximum entropy principle and the maximum likelihood method. Two methods of multivariate density estimations are presented, the Gaussian kernel density estimation method and the Gaussian parametric method. The results provide statistical information on the significant parameters and show that the messenger wire tension of the catenary hides sources of variability that are not yet taken into account in the model

    The parametric propagation in underwater acoustics : experimental results

    Get PDF
    In underwater acoustics, detection of buried objects in sediments (cables, mines, . . . ) is a complex problem. Indeed, in order to ensure sufficient penetration depth in marine sediments, low frequencies have to be used, implying a low resolution. A solution proposed to solve this problem is the parametric emission based on the nonlinear properties of seawater. This method can generate a low frequency wave from two directional high frequencies beams. The aim of this work is to present experimental results of a parametric propagation. Experiments have been carried out in a water tank in various configurations. These experimental measurements are then compared with simulation results obtained with a numerical model based on a fractional-step method presented at the Underwater Acoustic Measurements conference in 2011

    Introduction of variability in pantograph-catenary dynamic simulations

    Get PDF
    Currently, pantograph-catenary dynamic simulations codes are mainly based on deterministic approaches. However, the contact force between catenary and pantograph depends on many key parameters that are not always quantified precisely. To get a better chance of addressing extreme or combinations of critical conditions, methodologies to consider variability are thus necessary. Aerodynamic forces and geometrical irregularities of catenaries are thought to be significant sources of variability in measurement and this paper proposes methods to take them into account. Results are compared with measurements to see the importance of the considered parameters with respect to global variability observed in measurements

    Benchmarking Signorini and exponential contact laws for an industrial train brake squeal application

    Get PDF
    Contact representation of structure interactions for finite element models is nowadays of great interest in the industry. Two contact modellig strategies exist in the literature, either based on a perfect contact with no interpenetration of structures at contact points, or based on functional laws releasing the contact constraint through pressure-penetration relationships. Both strategies require very different and rarely documented numerical implementations, making difficult any objective comparison. This paper presents a benchmark between ideal contact and a functional law of the exponential type applied to squeal simulations by complex mode analysis of an industrial railway brake

    Correction of upstream flow and hydraulic state with data assimilation in the context of flood forecasting

    Get PDF
    The present study describes the assimilation of river water level observations and the resulting improvement in flood forecasting. The Kalman Filter algorithm was built on top of a one-dimensional hydraulic model which describes the Saint-Venant equations. The assimilation algorithm folds in two steps: the first one was based on the assumption that the upstream flow can be adjusted using a three-parameter correction; the second one consisted of directly correcting the hydraulic state. This procedure was applied using a four- day sliding window over the flood event. The background error covariances for water level and discharge were repre- sented with anisotropic correlation functions where the cor- relation length upstream of the observation points is larger than the correlation length downstream of the observation points. This approach was motivated by the implementation of a Kalman Filter algorithm on top of a diffusive flood wave propagation model. The study was carried out on the Adour and the Marne Vallage (France) catchments. The correction of the upstream flow as well as the control of the hydraulic state during the flood event leads to a significant improve- ment in the water level and discharge in both analysis and forecast modes

    Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems - Report on the Workshop ICOOOLPS'2006 at ECOOP'06

    Get PDF
    ICOOOLPS'2006 was the first edition of ECOOP-ICOOOLPS workshop. It intended to bring researchers and practitioners both from academia and industry together, with a spirit of openness, to try and identify and begin to address the numerous and very varied issues of optimization. This succeeded, as can be seen from the papers, the attendance and the liveliness of the discussions that took place during and after the workshop, not to mention a few new cooperations or postdoctoral contracts. The 22 talented people from different groups who participated were unanimous to appreciate this first edition and recommend that ICOOOLPS be continued next year. A community is thus beginning to form, and should be reinforced by a second edition next year, with all the improvements this first edition made emerge.Comment: The original publication is available at http://www.springerlink.co
    corecore