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The mean-field limit of a network of Hopfield neurons
with correlated synaptic weights

Olivier Faugeras' and James Maclaurin ? and Etienne Tanré?

May 13, 2019

Abstract

We study the asymptotic behaviour for asymmetric neuronal dynamics in a network
of Hopfield neurons. The randomness in the network is modelled by random couplings
which are centered Gaussian correlated random variables. We prove that the annealed
law of the empirical measure satisfies a large deviation principle without any condition
on time. We prove that the good rate function of this large deviation principle achieves
its minimum value at a unique Gaussian measure which is not Markovian. This im-
plies almost sure convergence of the empirical measure under the quenched law. We
prove that the limit equations are expressed as an infinite countable set of linear non
Markovian SDEs.

AMS Subject of Classification (2010):
60F10, 60H10, 60K35, 82C44, 82C31, 82C22, 92B20

Keywords: Mean-field model; random correlated interactions; thermodynamic limit; large
deviations; nonlinear dynamics; exponential equivalence of measures

1 Introduction

We revisit the problem of characterizing the large-size limit of a network of Hopfield neurons.
Hopfield [14] defined a broad class of neuronal networks and characterized some of their
computational properties [15, 16], i.e. their ability to perform computations. Inspired by
his work Sompolinsky and co-workers studied the thermodynamic limit of these networks
when the interaction term is linear [6] using the dynamic mean-field theory developed in [22]
for symmetric spin glasses. The method they use is a functional integral formalism used in
particle physics and produces the self-consistent mean-field equations of the network. This
was later extended to the case of a nonlinear interaction term, the nonlinearity being an odd
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sigmoidal function [21]. A recent revisit of this work can be found in [7]. Using the same
formalism the authors established the self-consistent mean-field equations of the network
and the dynamics of its solutions which featured a chaotic behaviour for some values of the
network parameters. A little later the problem was picked up again by mathematicians. Ben
Arous and Guionnet applied large deviation techniques to study the thermodynamic limit of
a network of spins interacting linearly with i.i.d. centered Gaussian weights. The intrinsic
spin dynamics (without interactions) is a stochastic differential equation where the drift is
the gradient of a potential. They prove that the annealed (averaged) law of the empirical
measure satisfies a large deviation principle and that the good rate function of this large
deviation principle achieves its minimum value at a unique measure which is not Markovian
[12, 1, 13]. They also prove averaged propagation of chaos results. Moynot and Samuelides
[18] adapt their work to the case of a network of Hopfield neurons with a nonlinear interaction
term, the nonlinearity being a sigmoidal function, and prove similar results in the case of
discrete time. The intrinsic neural dynamics is the gradient of a quadratic potential.

We extend this paradigm by including correlations in the random distribution of network
connections. There is an excellent motivation for this, because it is commonly thought
that neural networks have a small-world architecture, such that the connections are not
completely random, but display a degree of clustering [23]. It is thought that this clustering
could be a reason behind the correlations that have been observed in neural spike trains [5].

We propose a different method to obtain the annealed LDP to previous work by Ben
Arous and Guionnet [1, 13], Faugeras and MacLaurin [10]. The analysis of these papers
centres on the Radon-Nikodym derivative between the coupled state and the uncoupled
state, demonstrating that this converges as the network size asymptotes to infinity. By
contrast, our analysis centres on the SDE governing the finite-dimensional annealed system.
It bears some similarities to the coupling method developed by Sznitman [24] for interacting
particle systems, insofar as we demonstrate that the finite-dimensional SDE converges to the
limiting system superexponentially quickly.

Our method is more along the lines of recent work that uses methods from stochastic
control theory to determine the Large Deviations of interacting particle systems [4]. It is
centered on the idea of constructing an exponentially good approximation of the annealed
law of the empirical measure under the averaged law of the finite size system.

2 Outline of model and main result

Let I, = [-n---n], n > 0 be the set of 2n + 1 integers between —n and n, N := 2n + 1.
For any positive integer n, let .J,, = (J); jer, € R¥*N and consider the system SV (.J,,)
of N stochastic differential equations

Vi = Y., JIf(V))dt+odBi i€l,
SN(Jn) = { ‘/Oit _ OZJELL f( t ) t (1)

where (B%);c;, is an N-dimensional vector of independent Brownian motions. We assume for
simplicity that Vi = 0, i € I,. ¢ is a positive number. The function f : R — R is bounded
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and Lipschitz continuous. We may assume without loss of generality that f(R) C [0, 1] and
that its Lipschitz constant is equal to 1. A typical example is

0=y o

(2)

The weights J,, := (Jﬂl'k)j rer, are, under the probability v on (£2,.4), centered correlated

Gaussian random variables with a shift invariant covariance function given by

. 1
EY [J7 I = NRJ((/c —4)mod I, (I — j) mod I,,) (3)

Remark 2.1. Fxpectations w.r.t. v are noted EY throughout the paper.

Remark 2.2. Model (1) is a slightly simplified version of the full Hopfield model which
includes a linear term and a general initial condition:

dv; = —aVidt+ .., JIf(V))dt +0dB! ic I,
SNu(Jn) = ¢ ¢ jeln “n JATE t " 4
futn) ={ P T (@)
a 1S a positive constant and iy 1S a probability measure on R with finite variance.

Adding the extra linear term and a more general initial condition does not change the
nature of the mathematical problems we address but complicates the notations.

Here R is independent of n and such that

1.
|R7(k, D] < arby (5)
where the two positive sequences (ay) and (b;) are such that
ar = o(1/|k[’), and Y b <oo (6)
lez

We note a and b the sums of the two series (ag)rez and (bg)rez,

a::Zak b::Zbk (7)

kEZ kEZ

2. There exists a centered Gaussian stationary process (J% )i jez With autocorrelation Ry .
Because of (5) this process has a spectral density noted R given by

Ry(p1,02) = Y Ry(k, e *ere92, (8)

k€.
with 2 = v/—1. We assume that this spectral density is strictly positive:

Ry(¢1,¢2) > 0 (9)

for all ¢, @9 € [—m, 7.



Remark 2.3. The hypotheses (6) guarantee that the Fourier transform

R(,0) = > Ry(k,l)e**

kleZ

is three times continuously differentiable on [—m,w|. We provide a short proof.

Proof. Define Qs (k) := > ,c, R7(k,1). This is well defined since the series in the right
hand side is absolutely convergent. Because |Q 7 (k)| < bay, Q7(k) is o(1/]k|*) and hence its
Fourier transform R (p,0) (see (8)) is three times continuously differentiable. O

We have the following Proposition.
Proposition 2.4. For each J, € RN*N SN (],) has a unique weak solution.

Proof. For each J,, we have a standard system of stochastic differential equations with
smooth coefficient (Lipschitz continuous). Existence and uniqueness of the solution is well
known. ]

The solution V;, := (V¥);¢z, to the above system defines a 7"-valued random variable,
where 7 = C([0,T],R).

Given a metric space X, in what follows X = 7, 7%, or T%, and the corresponding
distance d we consider the measurable space (X, B;), where By is the Borelian o-algebra
induced by the topology defined by d, and note P(X) the set of probability measures on
(x ) Bd) :

We note P € P(T), the law of each scaled Brownian motion oB!, P®N € P(TY) the
law of N independent scaled Brownian motions oB’, j € I,, and P®% € P(T?%) the law of
(0B])jen. We also note PN(J,) € P(TN) the law of the solution to SN (.J,).

We note u = (u');cz an element of T2 and u,, = (u');cs, its projection on T,

Given p € P(T%) we note u'» € P(TV) its marginal over the set of coordinates of wu,.

Because of the shift invariance of the covariance R; we are naturally led to consider
stationary probability measures on 7%. For this, let S? be the shift operator acting on 7%
by

(S'w) =ut weT? i,jel,
and let Pg (TZ) be the space of all probability measures that are invariant under S. This

property obviously implies the invariance under S?, for all integers i. The periodic empirical
measure fi, : T — Pg(T?%) is defined to be

. 1
/"LTL(un) = N Z 5Siun,p’ (10>
icly
where u,, € T is the periodic interpolant of u,, i.e. such that uj , := uf ™™ Let

I1"(J,) = PN(J,) o i, € P(Ps(T%)) be the (quenched) law of fi,(V;,) under P¥(.J,), and
" = E["(J,)] = E" [PV (J,)] o 4" € P(Ps(T?)) be the annealed (averaged) law of



fin(V,,) under the averaged law Q" := E7[PN(J,)]. Finally let I = P®N o fi.! be the law of
fn(0B,), i.e. the law of the empirical measure under PV,
We metrize the weak topology on 7% with the following distance

dr(u.0) = > bi | (@) = 50, (11)

where || f(u') — f(v')|l; = sup,eiory | f(u;) — f(vf)| and the positive sequence b; is defined by

(5).
We use the Wasserstein-1 distance to metrize the weak topology on P(TZ):
given p, v € P(T#) we define

Dr(uv) = _inf / dr(u, v) d€(u, v), (12)

where C(u,v) denotes the set of probability measures on 7% x TZ with marginals 4 and v
on the first and second factors (couplings).
The following is our main result.

Theorem 2.5.

(i) The sequence of laws (I_I")H€Z+ satisfies a Large Deviation Principle with respect to the
weak topology on Ps(T™), with good rate function H(u) : Ps(T”) — R.

(ii) The rate function H has the following structure. If it is not the case that p'» < PN
for all n, then H(u) = oo, otherwise

Hip)= o {190}, (13)

CEPs(T#):¥(()=p

where the measurable function ¥ : Ps(T%) — Ps(T%) is defined in Section 3.2. and
I®) in Theorem 2.6.

(iii) H has a unique zero p, = W(P®%).

(iv) . is the law of the unique weak solution Z of the following system of McKean-Viasov-
type equations,

t
Z! = oW} +J/ 07 ds (14)
0
t
0l =0> / Li(t,s)dZ:.
iez V0

The sequence of processes (O'Wj)jez is distributed as P®*, and L, is defined in Re-

mark 3.3 and Appendix C.1. Furthermore p, is Gaussian.



The proof of this theorem uses the following, classical, theorem [3] and [8, Section 6].
Recall that IT7 is the law of the empirical measure under P&V,

Theorem 2.6. The sequence of laws (1‘[3)11€Z+ satisfies a large deviation principle with good

rate function 1) on Ps(T%). The specific relative entropy is
1
19(p) = lim 1) (' | P2Y), (15)
where, for measures v and p on RY, the relative entropy 1 is defined by

d
/ log —p(a:)u(dx) if p<Lv
RN dv

~+00 otherwise,

Do) =

see e.g. [9].
The unique zero of 13 is P®%.

A standard argument yields that the averaged LDP of the previous theorem implies
almost sure convergence of the empirical measure under the quenched law [1]. This is stated
in the following corollary.

Corollary 2.7. For almost every realization of the weights and Brownian motions,
fn (Vi) = e as N — oc.

Proof. The proof is standard. It follows from an application of Borel-Cantelli’s Lemma to
Proposition 2.9. 0

Remark 2.8. Note that this implies that for all f € Cy(T%) and for almost all w € 2.

lim — S EPTUOE) f(STY, ) /f ) dpis (v (16)

N—ooo N
T i€ly

Proposition 2.9. For any closed set F' of Ps(T?*) and for almost all J,,,

1
limsupﬁ log [PN(J,)(ftn € F)] < — inf H(p).

N—oo peF

Proof. The proof, found in [1, Th. 2.7], follows from an application of Borel-Cantelli’s
Lemma. O

Remark 2.10. Note that in the case we assume the synaptic weights to be uncorrelated,
equations (14) reduce to

Zy=0Wy+o0~ / / L(s,u)dZ,ds (17)
which is exactly the one found in [1, Th. 5.14].
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3 Proof of Theorem 2.5

Our strategy is partially inspired from the one in [1, 13]. We apply Girsanov’s Theorem
to SV (J,,) to obtain the Radon-Nikodym derivative of the measure PV (.J,,) with respect to
the measure P®Y of the system of N uncoupled neurons. We then show that the average
Q" of PN(J,) w.r.t. to the weights is absolutely continuous w.r.t. P®Y and compute
the corresponding Radon-Nikodym derivative which characterizes the averaged (annealed)
process. As in the work of Ben Arous and Guionnet [1], the idea is to deduce our LDP
from the one satisfied by the sequence (IIf}),en. We differ from the work of Ben Arous
and Guionnet in that in order to obtain the Large Deviation Principle that governs this
process we approximate the averaged system of SDEs with a system with piecewise constant
in time coefficients by discretizing the time interval [0, 7] into m subintervals of size T'/m,
for m an integer. This system allows us to construct a sequence of continuous maps ¥ :
Ps(T?) — Ps(T?”) and a measurable map ¥ : Pg(T%) — Ps(T%) such that the sequence
U™ converges uniformly toward W on the level sets of the good rate function of the LDP
satisfied by IIj. We then show that for a specific choice m(n) of m as a function of n the
sequence II7 o (U™™)~1 is an exponentially good approximation of the sequence II". The
LDP for IT" and the corresponding good rate function then follow from a Theorem by Dembo
and Zeitouni, [8, Th. 4.2.23].

In more details, we use Girsanov’s Theorem to establish in Section 3.1 the SDEs whose
solution’s law is the averaged law (Q". In Section 3.2 we construct an approximation of these
equations by a) discretizing the time interval [0, 7] with m subintervals and b) cutting off the
spatial correlation of the weights so that it extends over [—¢y,, ¢»] rather than over [—n,n],
¢m < n. We then use this approximation to construct the family (¥™),,en of continuous
maps. Section 3.3 contains the proof of our main Theorem 2.5. This proof contains two main
ingredients, the exponential tightness of (II"),cz+ proved in Section 3.4, and the existence of
an exponential approximation of the family of measures (II"),cz+ by the family of measures
(II™™) pymez+ = I o (™)1 constructed from the law of the solutions to the approximate
equations. The existence of this exponential approximation and the possible choices for m
and ¢,, as functions of n are proved in Section 3.5. The unique minimum of the rate function
is characterized in Section 3.6.

3.1 The SDEs governing the Finite-Size Annealed Process

For every J, € RY*N  PN(J,) is a probability measure on 7 and as a consequence of
Girsanov’s theorem

dPN(J,)
dPeN

Fr

2
exp{ ( Jif XJ)) dB! ——Z < Ji f Xf)) dt
i€l, JE€In i€l JjEIn



where ‘ A
X] =0oB] (18)

In Proposition 3.4 below, we demonstrate that the Radon-Nikodym derivative of Q" w.r.t.
P®N exists and is a function of the empirical measure. To facilitate this, we must introduce
intermediate centered Gaussian Processes (G})cr, teo,r), for which it turns out that their
probability law is entirely determined by the empirical measure, i.e.

Gy= Y Jif(x)), i€l (19)

Jjeln

It can be verified that the covariance is entirely determined by the empirical measure,
i.e., according to equation (3)

EY [GiGY] = / Gl ()G (w) dr(w) =

— Z Ry ((k — i) mod I, (I — j) mod I,,) f (X{) f(X}) =

leIn
Z R7((k—1) mod I,,, m)— Z FX) f(XGHm) mod Iny
meln NI
Z R7((k — i) mod I,,m) / f)f dfin(X,)(v) == Kﬁn(lx )(t, s). (20)

mEIn

Remark 3.1. Note that we have shown that under vy, the sequence G, i € I,,, is centered,
stationary with covariance K, (x,). To make this dependency explicit we write A (Xn) the
law under which the Gaussian process (G})ier, tep,r) has mean 0 and covariance K, (x,,)-

Before we prove the following proposition which is key to the whole approach we need to
introduce a few more notations. We note

) exp {5 Yer, Jy (G2)° ds} o

DR [GXP {_# Dier, f(f (G)* dSH |

and define the new probability law

Remark 3.2. More generally given a measure pi in Ps(T%) we note v* the law under which
the Gaussian process (Gi)ie]n’t€[07T] has mean 0 and covariance K, such that

Kkts Zngm/fvt du(v)

mely,



and

7# = Af(G) ’ 7M7

where
exp {_# > ier, fot (Gi)2 ds}
£ [exp {_# > ier, f(f (G’ ds}] |

The properties of K, are proved in Appendiz C. Note that we do not make explicit the
dependency of A on u since it is always clear from the context, see next remark.

M (G) =

Remark 3.3. To each covariance K,, defined in Remark 3.2 we associate a new covariance
L, such that

L (s,u) = B [A(@)GIGE] = BV [GIGE]

for all 0 < s, u <t. The properties ofL , in particular the fact that it is a covariance, are
stated and proved in Appendiz C. For the sake of simplicity and because it is always clear
from the context, we drop the upper index t and write L’; instead of LZ”“ .

Proposition 3.4. The measures Q" and P®N are equivalent, with Radon-Nikodym derivative
over the time interval [0,t] equal to

(g [ [ e

dP®N
j€ln Jj€ln

6 = g2 [Z GI / GidB!

i€l

(24)

Proof. As stated above, by the Girsanov’s Theorem we have

dPN(J,)
dP®N

exp{ 2}:/ < IJ”fXJ>dBZ ——Z/ ( IJ”fXU) ds

’LGIn

Applying the Fubini-Tonelli theorem to the positive measurable function dggéﬁ) we find

that Q" < P®N and

exp{ / (Z Ji f(X7) ) dBi—
S5 (o) o]

el

dQr
dPeN | .

="




Moreover, under -, {Z;el Jif(X]),iel,, t< T} is a centered Gaussian process with
covariance K, (x,), thanks to (19) and (20). Therefore we have:

An(Xn) 7 1 i
=E" lexp{ ZEI/GdB}xeXp{ 2022/ G }]

ZEIn

aQr
dPeN |

Divide and multiply the right hand side by E*"**" [eXp {—# > el fot (G1)? dsH to ob-
tain, thanks to (21) and (22):

DL [Xp{ ;/ G’dBZ—TﬂZ/ (Gh)* }]

i€ln,

gy [ { 53 Z/ GZ } w B [exp{ / G dBl} (25)
o i€l, i€ln
By Gaussian calculus and (22)
E;yfn(xn) [eXp{ Z/ G’L dBl} = exp 2 —Mn(Xn) (Z/ Gl dBZ> =
iel, i€l
1 fn n
2_ EY (Xn) <Z/ G’L dBZ) At G)
i€l
This shows that
dQm™ B
dP@N Ft
R [ { Z/ G’ }] X exp 2— B (Z/ G dBZ) A(G)
i€ly i€ln
(26)

The above expression demonstrates that @[, is equivalent to Pf%v for all ¢t € [0,T], since

the above exponential cannot be zero on any set A € B(T") such that P®V(A) # 0. Thus
by Girsanov’s Theorem [19],

Zt—exp<2/ ¢?dBI — Z/ 93 >
JEln ]EI

10



where Z, = d‘;%‘ﬂ, and 6 = %(log Z., B7),.
. d 1 anxn)
0 = —( B, —E" “dB' ] A.
t dt< 7 202 (zEI /G > >t
d i fn(Xn)
— J ol Q
—|—dt<B_,log (E { 202;/ (GY) }D >t. (27)

the second bracket only contains a finite variation process, so its bracket with B’ is 0.
Furthermore the probability measure ~"»(*») € Pg(T%) does not change with time, hence
we may commute the bracket and expectation as follows,

; in(xn) | d i i
0 =E7 dt<B,, o (Z/ G dB) >t
i€l

) 2> " A(G) / GldB

1€l

:27215’”

(28)

since A; is time-differentiable, and we have used Ito’s Lemma. To be sure, we have carefully
double checked (using multiple applications of Ito’s Formula) that the time-differentiable
terms in (27) are of the correct form. We thus have proved the Proposition, using (22)
again. 0
Remark 3.5. By writing G7, G* and A(G) as functions of the synaptic weights in (28) and
using their stationarity, Gj can be rewritten as

,QZEfﬂn(Xn) |:G0/ GZ Bz+]:| _O_fQZE’Y“"(X“ |:At GO/ Gl BZ+]:| —
icl, i€ly,
(o s
and G} =3, T f(XT)

Y

with indexes taken modulo I,,.

Since Q" and P®V are equivalent, by Girsanov’s Theorem we obtain the following imme-
diate corollary of Proposition 3.4. Part (ii) of the corollary is immediate from the definitions.
Corollary 3.6.

(i) Let V,, € TV have law Q™. There exist processes Wt] that are independent Brownian
motion under Q" and such that V,, is the unique weak solution to the following equations

t
V! = oW/ —|—a/ ¢! ds (29)
t
,2 ZEwn( Vn) {Gg/ GistHj}' (3())
i€ly 0

(ii) The law of fi,,(cW,,) under Q™ is IIf.

11



3.2 Approximation of the Finite-Size Annealed Process and con-
struction of the sequence of maps V"

It is well known that Large Deviations Principles are preserved under continuous transfor-
mations. However we cannot in general find a continuous mapping I on Pg(7 %) such
that T (/ln(aWn)) = [1,(V,,), where V, is defined in Corollary 3.6. Therefore to prove the
LDP, we will use ‘exponentially equivalent approximations’. This technique approximates
the mapping fi,(cW,,) — [i,(V,) by a sequence of continuous approximations. Our next step
therefore is to define the continuous map W™ : Ps(T%) — Ps(T%) (for positive integers m),
which will be such that for any § > 0, the probability that Dy (U™ (fin(cW,,)), fin(Vy)) > 6 is
superexponentially small. These approximations will converge to the map W that is defined
in the proof of Theorem 2.5. This is done in two steps: First approximate the system (29)-
(30) by discretizing the time and cutting off the correlation between the synaptic weights
and, second, by using this approximation to construct the map ¥™ from Pg(TZ) to itself.

3.2.1 Approximation of the system of equations (29)-(30)

To this aim, we use an Euler scheme type approximation: the integrand of V;j is replaced by
a piecewise constant in time version. Let A,,, m a strictly positive integer, be a partition of
[0, T'] with steps n,, := % into the (m + 1) points pn,,, for p = 0 to m, and for any t € [0, T,
write (™) := pn,, such that t € [pnm, (p + 1)1m).

To obtain the Large Deviation Principle, we need to approximate the expression for V,, in
Corollary 3.6 by a continuous map. The approximate system has finite-range spatial interac-
tions. The spatial interactions have range @, = 2¢,, +1 (with 0 < ¢,, < n). The parameters
m and ¢, are specified as functions of n in Remark D.2 in the proof of Lemma 3.21.

More precisely, following (29), the approximate system is of the form, for j € I,

¢ . s(m) ' o )
Vi =t Yy / EWW{AS(M(G”%)G;@S) / G AV | ds + oW (31)
ie[lrm 0 0

indexes ¢ + j are taken modulo I,. The I, -periodic centered stationary Gaussian process
(G )iet,,, tefo,r) is defined by

Gyt =Tk FVM i e, (32)

kely

where the {J* }icr,  rer, are centered Gaussian Random variables with covariance (remem-

ber (3))

EY [Jz] Jkl 1

] = ~ i (k—i mod I, l—j modIl,)1l; (I—j modlI,), (33)

where 17, is the indicator function of the set I, . Note that the sum in (32) is for k € I,,.

12



The W/s are Brownian motions and (remember (21))

eXp { 20.2 fO ZEIq,m GZLﬂ)QdS}
ErAn (Vi [exp {—ﬁ 0t<m) Zielqm (G;n’i)Q dSH 7

It is important for the upcoming definition of the map W™ that the covariance between
the Gaussian variables (G;"") can be written as a function of the empirical measure fi,, (V™)
which we now demonstrate. One verifies easily that

Ay (G™) :=

(34)

Cov(Gy™, GI™) = D Cov( il Jn) FV) F(VIM) =

n,m’ “Yn,m
Jl€ln

1 .
w2 Bo(k—i mod I, .1 —j mod L)Ly, (I—j mod L)f(V™)f(V") =

> Rg(k—i modI,, K)+ Zf(‘ém’j)f(‘ém“K):

Kelqm jEIn
S Ry(k—i mod I, K / F?) f (") dfin (V)] =
Kel,,,

> Rg(k—i mod I, K)EY) [f(wf) f(wl)] . (35)

Kelg,
This implies that (31) can be rewritten
. _An(V, n . -
Vi = 0 e, Jo B [Gm oIy e dvum’kﬂ] ds+oWj, jel,  (36)
or
V= oW +o—/ 07 ds
t(m)

. ~fin (V, n ]
o o2 Y Elim [Gmo G:};};m@W’”ﬂ] ,j €I
0

t(m)

(37)
kEICIm

3.2.2 Construction of the sequence of maps V™

In order to construct the map U™ we rewrite (36) in terms of the increment of V;™ — V1
of the process V':
—ll«n S(7n> . . .
VM=Vt 3 / B {GZ&% / GZ?;Zqum”“*J} ds+0 (W7 =Wi). j € I
k€I, 0
(38)
We can now generalize (38) by considering a general measure v in Pg(T%) and simply

replacing "y; n(Va") by 4% in this equation. This is the basic idea but we have to be slightly
more careful.
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In detail, following Remark 3.1, given v = (11, 1o) € Ps((T#)?) we define the I, -
periodic centered stationary Gaussian process (G}"")icy,,, tefo,1], i-€. its covariance function,
by (patterning after (35))

Cov(Gy™,G™F) = B G G ]

= > Rg(k—i mod I, K)E" [f(w))f(w)]. (39)
Kelg,,
Given two elements X and Y of 7% we define the m elements Z% of T% foru =0,--- ,m—1

by

Vt € [unm, (u+ 1)), j € Z,

} t " vl (o),
u,j J —1 E Yun m,0 E m,i u,i+j
Zt - Yunm + o / E " Gunm G'Unmdy;) ds
UNm UNm

1€1g,, v=0
+o(X! = XI, ) (40)
Z =Y t < unn, u>0
and ' '
209 = 2 2 (05 D
Remark 3.7. Note that
(a) if X and Y/ are N-periodic, so is Z}.

(b) the expected value EVeim in, (40) acts only on the Gaussian random variables G™ and
not on the Y's.

This defines the sequence of mappings ¢ : Ps((T%2)?) x (T%)2 = (T4)*, u=0,--- ,m—
1, by
vy (v Y, X) = (2", X), (41)

the sequence of mappings W™ : Ps((T%)?) — Ps((T%)?), u=0,--- ,m — 1 by
U (v) = vody(v, )7, (42)
and finally the mapping U™ : Pg(T%) — Ps(T%) by
U () = (Wi 0+ -0 Wt o W0(p))t, (43)
where U0 : P(T%) — P((T#)?) is defined by
O(p) = pou, (44)

and ¢ : T# — (T7)?* is defined as
U(z) = (0,27) (45)

We then have the following Lemma.

14



Lemma 3.8. The function ™ defined by (43) is continuous in (Ps(T%), Dr) and satisfies
U™ (i (0Wy)) = fin (V")
where V™ is the solution to (36).

Proof. ™ is continuous: '
Recall the formula (40) for Z,":

, _ (1) _ o A ,
799 =Yi 4o Y / Ehn {G;ggz / G:;:;;dxw] ds + o(X{ — X3,,)

7’eIfI'm
Note that
(v+1)nm . o
m,i u,i+j m,i UZ J _ u,t+7
/ G dY Gmlm < (U+1)777n lem ) ?
VN,
and hence

i (v+1)n
EYunm Gm ,0 E / va i dYu Jit+g
MNm NMm
Vlm

,0 u Ja+g w143
Aunm Gm Gm ZGvﬁm < (v+1)1m Y;mm j)

u—

— "

—_

_ E,yu [Am]m<Gm>Gm ,0 Gm K ] <Yu Ji+g o Yu,iJrj) ,

(v4+1)nm VNm

S
Il
o

since B does not operate on Y7 see Remark 3.7(b). Using Remark 3.3 we can conclude
that

Ztu"j = Yif’ﬂm +o Z / Z LVI UNm, VTm (}/(l;_ii)‘?qm - K}:;TZ+J) ds

i€lgy, ¥ UM v=0

+o(X] — X2, ), t € [unm, (u+1)n,

The quantities L!, (ufm, vny,) are defined in Remark 3.3 and in Appendix C. The con-
tinuity of v follows from the facts that this equation is linear in X, Y and Z, and the
mapping v — L,, is continuous, see Proposition C.10. The continuity of U] follows from
(42) and that of U™ from (43) and the continuity of W° defined by (44) and (45).

U™ ([in(0Wy)) = [in(VE), where VI is the solution to (36):

We use the following Lemma.

Lemma 3.9.

(i) We have fi,(X,)ot = fin(0,, X,) € Ps((T%)?) for all X,, € TV, where0,, = (0,---,0) €
TN,

15



(ii) Let X, = (X}, X2) be an element of (TN)?, and [in(Xpn2) = % e, O(si X1, .51X2 )
(remember (10)) the corresponding empirical measure in Ps((T%)?). Let ¢ : (T%)? —
(T%)?, be a measurable function. Then it is true that

fin(Xp2) 0 ot = fin(p(Xn2)),
where, with a slight abuse of notation, if X, 2, € (T#)? is the periodic extension of
X2 € (T2 de. (XL, X2, and p(X,2,) = (Y1, Y?) € (T%)? we define

n7p’ n7p

(P(Xn@) - QO(XW,Q,P) = ((an’ T 7Yn1)7 (ana T ?Ynz))

We first prove that Lemma 3.9 is enough to conclude the proof of Lemma 3.8. First,
statement (i) of Lemma 3.9 implies

\Ijo(/ln(UWn)) = ﬂn(UWN> 01 = fin(0n, cWy).

Going one step further, and using the definition (42) and statement (ii) of Lemma 3.9

U5 (OO (fin (W) = VG (fin(On; oWn)) = fin (O, aWe) 0 g (f1n Oy W3, -, -)~H =
fin (V5" (fn 0y oW3), 0ny Wia)) = fin( v, oWa),

where V™ is equal to the solution of (36) on the time interval [0,7,,]. According to Re-
mark 3.7, V™7 is N-periodic in the variable j for ¢ € [0, n,,].

Next we have
(UG (P (i (W) = OT (1 (V™ 0Wa)) = fia("V™, 0 W) 0 7 (i (V™ 0 Woa), -, 1)

= [ (U7 ([ (V" 0 W), OV 0W)) = i (TV 0 W),

where V"™ is equal to the solution of (36) on the time interval [0, 27,,,], and again N-periodic.

One concludes that

oo ¥go VO (fin (W) = fin ("™ W),
where ™~ 'V™ is equal to the N-periodic solution of (36) on the time interval [0, mn,,] = [0, T]
ie. V.
Therefore,
U (fin (W) = (U g 0+ 0 WG 0 WO(f1 (0W30)))' = (i (™I, 0 W)
= (V) = (V)

We now prove Lemma 3.9.

Proof of Lemma 3.9.

(i) For any Borelian of (T%)? we have fi,(X,,) 0 t(A) = fi,(X,)(t7H(A)) = (X)) ((AN {0 x
TZ})3), where (AN {0 x T%})y is the second coordinate y of the elements of A of the form
(0,y). This means that fi,(X,) ot = f1,(0,, X,).

(ii) Let A be a Borelian of (7%)2. We have

(fin(Xn2) 0 @ )(A) = fin(Xn2) (07 (A)) = fin(0(Xn2))(A),
and the conclusion of the Lemma follows. O]
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3.3 Proof of Theorem 2.5.(i)-(iii)

It turns out to be convenient, in order to prove the Theorem, to use the L? distance on 7%
given by
dp2(u,v) = Z b; Hf(uz) - f(UZ)HLQ (46)
i€
where

) = £ = [ (1) = s

The reason for this is that we are then able to use the tools of Fourier analysis since the
measures we consider are shift invariant, i.e. invariant to spatial translations.
Let Dp 12 be the corresponding Wasserstein-1 metric on P(7%) induced by drz2(u,v).

Remark 3.10. The topology induced by Dy 2 on P(T%) is coarser than the one induced
by Dp. Hence it will suffice for us to prove the LDP with respect to the topology on P(T%)
induced by the metric Dy 2. This is because we prove in Lemma 3.15 that the sequence II" is
exponentially tight for the topology induced by Dy on P(T%). We can then use [8, Corollary
4.2.0] which states that if II" satisfies an LDP for a coarser topology, then it does satisfy the
same LDP for a finer topology. Lemma 3.15 is proved in Section 3.4.

We use [8, Th. 4.2.23] to prove the LDP for fi,,(V;,) on Ps(T%) induced by the metric
Dy 2. The common probability space in which we perform the exponentially equivalent ap-
proximations is (7, Q") which contains the random variable (V), as well as (as explained
in Corollary 3.6) the random variables (¢W/) which are distributed as P®Y. We approxi-
mate fi,(V;,) by ¥™ ([Ln(UWn)). It is noted in Lemma 3.8 that the approximations ¥ are
continuous with respect to the topology induced by Dr, so that they must also be continuous
with respect to the topology induced by Dy r2.

The proof is based on Lemma 3.16. According to this Lemma for any j € N*| we have

lim lim %log Q" (DT,LQ(@m(ﬂn(aWn)),ﬂn(vn)) > 23'1> = —00.

mM—00 N—00

We define m; to be the smallest integer strictly bigger than m;_; such that

sup m%log Q" (DT,LZ (U (fin(cW2)), fin (Vi) > 2—3’—1) < —j. (47)

. n—00
m>m;

By construction, the sequence (m;),>; is strictly increasing and hence lim; ., m; = oco.
Next define the sets

A, = {u - D (07 (), W™ (1) < 2f}, jeN, (48)
and the set
2 = lim inf 2, = U N2 (49)
JENT k>j

The following Lemma shows that 2 is not empty.
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Lemma 3.11. If I®) () < oo, then p € 2.

Proof. We prove that if I®(u) < j, then u € 2; and so we also have u € MNi>; A By
Theorem 2.6, we know that -

— inf I® (1) < lim

1 n c T 1 n c
o lim - log IT5 (245) < lim = log ITy (2A5) (50)

But
A C {p, D2 (O™ (1, fin (V) > 27UtV U {u, D2 (U4 (1), i (V) > 27UFD Y,
We deduce by Corollary 3.6 that
g (A7) <
11 (Drgs (874 (1), (V) > 200) 4T (Do (0755 () 1 (Vi) > 2-0%0)
<Q" (Dr,2 (U™ (f1a (0 W) fin(V2)) > 270D
+Q" (D2 (O™ ([ (W), fin (Ve )) > 9-G+D)

<Q" (DTL2(‘I’ (Mn(UW )) n(Va ) JH)
+ Q" (D2 (U™ (f1n(0W)) fin(Vi)) > 27042)

In addition, using log(a + b) < log(2max(a, b)) = log(2) + max(log(a),log(b)) and (47), we
obtain

T 1 n c
lim NlogHO () <

n—oo J

max { m % log Qn (l)T,L2 (\I}mj (/ln(O'Wn)) ) ﬂn(vn>) > 2_(j+1)) ,

n—oo

n—oo

lim - log Q" (Dr,2 (¥ (ftn (0 W), fin(Va)) > 2-U+2)) } <
mx{ — (G4 D} = -
Then, by (50) we conclude that Vi € 2 we have I®)(u) > j. It ends the proof. O

We define U : 2 — Pg (TZ) as follows
U(p) = lim U™ (p), (51)

j—00

It follows from the definitions (48) and (49) that (¥ (u))jeN* is Cauchy so that the limit in
(51) exists. In effect given 7 > 0 it is true that p € ﬂij 2. since, by the triangle inequality:

k- k—
Dy 2 (W™ (), WM+ (1 ZDTLQ M (gg), W (g Z ~(+) < 9-G-1)
1=0

=0
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it is true that im; ;oo Dy 2 (0™ (), Utk (1)) = 0.

In the notation of [8, Th. 4.2.23], e = N~ g =1", f:= U, y. =17 and f7 := U™,

Step 1: FExponential equivalence

The ‘exponentially equivalent’ property requires that for any 6 > 0, and recalling the
definition of V;, in Corollary 3.6 and the fact that the law of f,(V},) is II" (also in Corol-
lary 3.6),

lim lim % log Q" (DTﬂ (U (i (0W)), fin (V) > 5) = —00. (52)

J—00 Nn—00

This is an immediate consequence of (47) which in turn follows from Lemma 3.16.

Step 2: Uniform Convergence on Level Sets of 1)

The second property required for [8, Th. 4.2.23] is the uniform convergence on level sets,
Lo (o) = {p: I®(u) < a}, of I¥, that is we must prove that for any a > 0,

lim  sup {Dg (V™ (n), ¥(p))} = 0. (53)

I peL (s (o)
Note that the fact that for all j > |a] + 1,

sup {DT,L2 (‘I’mj(ﬂ)a o (N))} <27, (54)
HEL (3)(c)

follows from Lemma 3.11 and this suffices because

J—00

Dy 2 (0™ (1), O(p)) < Z D2 (9 (1), U™ (1)) <> 27% — 0. (55)

k=j

for all p € Ly ().
Step 3: Rate Function We have thus established the LDP. It remains for us to prove that

the rate function is of the form noted in the theorem, and its unique minimum is given by
i According to [8, Th. 4.2.23] ,

_ - 3)
Hp) = _, jof {1900}, (56)

where H (1) := oo if there does not exist ¢ € Pg(T%) such that ¥(¢) = u. Since the unique
zero of 18) is P®% we can immediately infer that the unique zero of H is ¥(P®%), which

is p.. In Section 3.6 we prove that this satisfies the McKean-Vlasov stochastic differential
equation stated in the Theorem.

Remark 3.12. Theorem 4.2.23 of [8] requires W to be defined and measurable in P(T%), not
only in A. Since A is non empty thanks to Lemma 3.11, measurable as a countable union of
closed sets, we can extend VU to a measurable function in P(TZ) by simply setting it to an
arbitrary measure, say P, in A°.
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3.4 Exponential Tightness of (II"),cz+ on (PS(TZ), DT)

In this section we prove in Lemma 3.15 the exponential tightness of (II"),cz+ for the topol-
ogy induced by Dz on Ps(T%). As pointed out in Remark 3.10 it is necessary to prove
Theorem 2.5.

Lemma 3.13 is crucial for comparing the system with correlations with the uncorrelated
system via Girsanov’s Theorem. It is used in the proof of the exponential tightness of
(H”)neZ . in Lemma 3.15 and is used, as well as Lemma 3.14, several times in the sequel.

Just as for several of the Lemmas below it makes good use of the Discrete Fourier Trans-
form (DFT) of the relevant variables. The corresponding material and notations are pre-

sented in Appendix B. As a general notation, given an I,-periodic sequence (£7),ez, , we note
(BP)per, its length N DFT defined by

2

=Y BF" Fy=e~ with i=—1.

J€ln

Lemma 3.13. For any M > 0, there exists Cyy > 0 such that

lim iloan <i sup Y ()" > CM) < —M. (57)

n—oo N N tel0.T] S o7

Proof. The proof is rather typical of many of the proofs in this paper. It uses some definitions
and results that are given in Appendix B. It follows three steps.
Step 1: Go to the Fourier domain

By Parseval’s Theorem, ) 1
F2 00 = Sl 5%)
GEI, pEln

Taking Fourier transforms in (29) and using Lemma B.1, we find that

¢
th = 0V~th—|—0/ 0Pds, (59)

0

where

~€ _ 0__2 E'yﬂn(vn) |:AS<G)G2/ éT—Pd‘zp:| . (60)
0

i 0 _ 1 q
Next we write G =  >_ ; GY.

Y fan(Vn 1 = 5 b g
o w6 6 [ erar
0

qu'IL

1 -2 an(Vn) ~ 3 N—p 117
=7 > B [AS(G)Gg /O Grpdv,z’}.

q€ly
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According to Corollary B.12 and its proof

S e a@ar [ aran] —e (e [ 6]
0 0

q€ln

— i tve) {Apl(@)ég /S G’T_pdf/p] .
0
This allows us to rewrite (60) as
~§ _ N 1 72 E,ylln(Vn) |:A|p / G pdVP:| (61)

We substitute (59) into the right hand side of (61) and obtain

1

5 L[ it (i) 0 Al An (Vo) | % || S L
0 —— /0 B AM(G)GEG L s + — [Atp (G)Gr /0 Gsdef} (62)

Step 2: Find an upper bound for the Fourier transformed quantities:
Applying twice the Cauchy-Schwarz inequality to (62),

p12 2t /t
‘et} < o2 N2 0

By Lemma B.14,

B (GGG

gyt [Alp / G- pdwp}

|0p‘ ds+—— N

B [AP(G)Gr G

<(Cq)? D FVI? ) F(VE? < N*(Cy)?

Jjel, kel
and
t 2
R {AM(G)G / éspdﬁ/f} < (CJ)QZf(V;] / £ Vk de
0 jely, kel
< N(Cy / f(VE de
kely,

Applying Parseval’s Theorem to the right hand side of the previous inequality,

S 2<N2(C (/ka dWﬂ) .

~ V ~ ~ ~ t ~ ~
g [A'f"(G)Gf / G;def}
0

pEln J.kel,
This means that
2
1 ~n12 _2 k
S | <2 /NQZ\epy a5+ = </fV jaw)
pEln peln j,kel,
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We thus find through Gronwall’s Inequality that
= > 1erf° <L(C\7)2€XP (2072(C)°T?) sup / fFVE)aw? 2~
N2 T o?N? rel0,t]
pe[’n ] ke[
Step 3: Apply Doob’s submartingale inequality:
Now ZMGI” (fo f(VE) dWJ> is a submartingale, hence, for any x > 0,

2
( :=exp (/{ 20 2N"HCOz)? exp (QU_Q(CJ)QTQ (/ fVF de) )

J,k€ln

is also a submartingale. By Doob’s submartingale inequality, for an K > 0,

”( sup _Zym >K) ”( sup exp( > 0] )>exp KNK))

tejo,r] N? s te[0,T] =

< Q”( sup C; > exp (mx))
t€[0,T7]

< exp(— HNK)]E[CT].

Now for k small enough, by Lemma A.1 and the boundedness of f there exists a constant
C' such that E[CT} < exp (NC') for all N € Z*. We thus find that

(v o 2= K) = (3 3, 2 %)

t [OTpEI
<exp (N(C—K}K)),

from which we can conclude the Lemma by taking K to be sufficiently large.

O
We have a similar result for ™7 defined in (37).
Lemma 3.14. For any M > 0, there exists Cyy > 0 such that
1 1 N2
lim — log Q" (— sup ;)" > C ) < —M. 63
oo N Nte[OT]]%;(t ) M (63)
Proof. The proof is similar to that of Lemma 3.13 and is left to the reader. [

Note that the DFT V™ of the approximation V™ satisfies the following system of
SDEs, analog to (59):
t
VP = UWf—I—U/ 07 Pds (64)
0

As pointed out in the introduction to Section 3.3 the exponential tightness is a key step
in proving the LDP for II".
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Lemma 3.15. The family of measures (H")neZJr 1s exponentially tight with respect to the

topology on Ps(T?%) induced by Dr. That is, for any M > 0, there exists a compact set
Ky C Ps(T?) such that

n—oo

— 1 n c
hmﬁlogﬂ (KM) < -M.

Proof. Consider the event R, s defined by
1 .
Ron = {— sup Z(€§)2EC’M} (65)
By Lemma 3.13, we can find C}; such that

— 1 "
JinoloﬁlogQ (Rom) < —M. (66)

For any compact set Ky of Pg(T%), we have II"(K§,) = Q" (4,,* (K§,)) so that, by (66)

—_ ]_ n c Y. 1 n{,— c c To 1 n
thlogH (KM) Smax{nll_{rgoﬁlogQ (MHI(KM)H"QH,M)’,}I_{EONng (ﬁﬂM)}

n—oo
— 1
< max{ T — log Q" (i (K5,) 1 %5,0,), —M},
n~>ooN ’
so that it suffices for us to prove that
— 1
lim — log Q" (fi, "(K§;) N &S ;) < —M. (67)
n—)ooN ’
By Proposition 3.4, and using the Cauchy-Schwarz Inequality;,
@ (i (50 N %) = |

T . . 1 T -\ 2 N
exp(Z/ 07dB? ——Z/ (67) ds)dP® (B)
BSOS, \Jer Jo 2 jeq o
T oo 3
< {/ exp <2Z/ egng—zz/ (69) ds)dP®N(B)}
i (K5O, 0 0

j€ln JE€In

r ;
X exp< / (67) ds)dP® (B)} :
{/nn%Kxfmz,M 2 0

jely,
Now using the properties of a supermartingale,

T T
/ exp (22/ egng—zz/ (9§)2d5>dP®N(B)
i (K508, ag 0 0

j€ln Jjeln
T T
g/ exp <2Z/ egng—zz/ (Hg)2d3>dP®N(B) <1
T jeln, 0 jer, 70
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Using the definition of £, s in (65), and since 11§ = PN o i1

T
/ exp (Z / (eg)st) dP®N(B) < exp (NTCwn) PN (0, (K5))
fin " (K§)NRS 0

n, M jeln

= exp (NTCy) 10§ (K5,).

Now (Hg)nez . is exponentially tight (a direct consequence of Theorem 2.6), which means
that we can choose K;; to be such that

lim % logIT§ (K5;) < —(2M 4+ TCy),

n—oo

so that we can conclude (67) as required. O

3.5 Exponentially Equivalent Approximations using U™

The following Lemma, which is central in the proof of Theorem 2.5, is the main result of this
section. Its proof is long and technical and uses four auxiliary Lemmas, Lemmas 3.20-3.23
whose proofs are found in Appendix D.

Lemma 3.16. For any 6 > 0,

T i - Tog Q" (g2 (U™ (i (017,)) (Vi) > 6) = —o0. (65)
Proof. The proof uses the following ideas.
By Lemma 3.8, U™ (i, (cW,)) = fi,(V,""). By Lemma 3.17, we can find an upperbound of
Dr r2(fin(V;™), fin(Vy,)) using the L? distance between V™ and Vj,, so that the proof boils
down to comparing the solution V,, to the system of equations (29) and (30) to the solution
V™ to the approximating system of equations (37) constructed in Section 3.2.1 by an L?
distance. By equations (37) and (29) this is equivalent to comparing the L? distance between
0™ and 6. As already mentioned, it is technically easier to work in the Fourier domain with
the L? distance between 6™ and 6P, p € I,,, the Fourier transforms of (§"7) ;7. and (67) ¢z, .
This distance naturally brings in the operators E,Zn (v, and Efzn (Vm) defined in Appendix C,
in effect their Fourier transforms.

The following Lemma (proved page 32) relates the Wasserstein distance Dr 2 between
two empirical measures associated with two elements of 77 to the L? distance between these
elements.

Lemma 3.17. For all X,,, Y,, € T we have

A b
D pa(iin(X0), fin(Ya)? < 2 3 | XF = V¥,

kel,

where b is defined by (7).
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We now follow our plan for the proof of Lemma 3.16.
By Lemmas 3.8 and 3.17 we write

m [~ ~ b2 m,j 112
DT,L2 (\IJ (Mn(O-Wn)) 7[1%(‘/71))2 S N Z HV Y= Vj||L2 :
j€I7L
By Parseval’s Theorem,
ATV v =3 [ e - vifa= g S [ v
jel, Jjel, pely,
In order to prove (68) it therefore suffices for us to prove that for any arbitrary M,§ > 0,

which are now fixed throughout the rest of this proof,

— — 1
lim lim —1 "
im lim — og Q)

Vmp Vp /T ) < —-M. 69
M—00 N—00 (te[O,T] NQZ‘ ‘ > /) ( )

peln

Using the expression in (59), it follows from the Cauchy-Schwarz inequality that for any
te[0,7],

2 t
Lo <2 [l-irta <0 [ ot m
0

pEln pEln pElL,

In order to continue our plan we introduce the discrete time approximation méf (my Of 9~§

(m)
m 1 fin(Vn) Xz N\ A s ~N— g
O = 2 [Afim><G>G§<m> / G inydV? (71)
We obtain in the following Lemma a characterization of m@P
Lemma 3.18. Assume s™ =vn,,, v=0,---,m. We have
m _ 72
0 = 02 (L0, 007" (0.
where [:/Zn(vn) is the (v+1) x (v + 1) matriz (f}zn(vn)(wnm,unm))w7u:07...7v defined by
— An(Vn) e = _
LZn(Vﬂ)<vnm7w/’7m) - N 1E’y [Alﬁlm<G)G€anw5m:| ’
and 8V is the v + 1-dimensional vector
- 0 w=20
oVl = { ~ (72)
Vo = Vo w=1m 0
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Proof. We give a short proof. Since s'™ = vn,,, v = 0,--- ,m, and using Remark 3.3 and
the notations of Appendix C

. . - UNm .
", = o ANTET {A"’ <G>G€nm/o G;f:n)dv;”]

UVTim
v—1
=02 S NTE Rl (@, Gl | (Vi — Vi)
-
=0 Z Eﬁnwn)(vnm, wnm)(v(iﬂ)nm - V£nm)
w=0

=o0? ( Vi) 5V > (V7))

where [:’u (v, 18 the (v+1)x (v+1) matrix (izn(vn)(wnm, UNm ) )w, u=0,- » defined in Remark 3.3
and Appendlx C.2. O

The autocorrelation function Lj, (v, (resp. Ly, (vm)) involved in the sequence (V7);cy,
(resp. (V™7);er,) and hence in the sequence (67);cr, (vesp. (0™7);cy,) arises from the
values of the autocorrelation function Ry, defined in (3), on a grid I,, x I,, (resp. I, x I,).
Since we are working in the discrete Fourier domain, it is natural, as explained in Appendix
C.2, and in fact necessary, to consider the following four operators (in the discrete time

setting, matrixes) in order to compare 67 and ™7, In detail, ign(vn), (resp. L (Vm))
p € I, is obtained by taking the length N DFT of the length N sequence (L: n(vn))leln (resp.

(Li (vm))ier,). Similarly, Lq’"&f/ X (resp. E‘?’:&%m)), p € I, is obtained by taking the length N

DET of the length @, sequence (L, (V) )i€l,, (Tesp. (Lfln(vm))iequ) padded with N — Q,,
Z€eros.
We then use the following decomposition

g — gm| < | i,

S

((Lin(Vn) LZ:L I\)/n ) 5Vp> (vnm)) +
(Bt = ) 7)) | 072 [ (B iy (77 = 0777) ) ()| +

n

‘ - ( fin (V) 5Vm’p> (V7)) — é;n,p

<

_|_

0,72

)

Each term on the right hand side performs a specific comparison:

First term: Allows to compare ép and its time discretized version méf (my Which is equal,

thanks to Lemma 3.18, to o2 ( 5V ) (VM)

Second term: Allows to compare the operator Lp (V) with its space/correlation truncated

and Fourier interpolated version LZ’:(p )
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Third term: Allows to compare the operator " V) with the operator Lp (V) correspond-

ing to the approximated solution.
Fourth term: Allows to compare the time discretized versions of the V,, and 17730” processes.

Fifth term Allows to compare the space/correlation truncated and Fourier interpolated

L‘hn P

opertor L") with its Fourier interpolation 6.

By slightly changing the order of the terms we write, remember that s = vn,,,

1 i mpl? O = 2 1
|- < m |-, o
peln, pel,
5 :p Lqm,p (SVP 2 5
+ N2g4 Z Pn(Va) — Pin(Va) (vnm> Ckvnm
pEln
5 S p2 (B s - 3
T N2 Z g < fin (Vi) ) (V) — 0, }O‘vnm
pE€ln
. S((Leg, -1 SVP) (vigm) ? 4
N2g4 fin(Vn) fn( Ulm Oém?m

N e e S T

Our first action is to remove the term o through the use of Gronwall’s Lemma.
Since, by Proposition C.8, \LG(vm)(vnm, wNy)| is uniformly bounded by some constant
K > 0 independent of w, v, p, ¢m, n, V.7, and according to equations (59), (64) and (72)

2 2
5K2 v 5 5 5K2 v—1 (w+1)nm 5 B
5 m, _ m,
Qo < N2 E (E |oVE — 6V P\) = N2z E <§ /w (68 — ) dr

Inserting this uppper bound for afmm in the right hand side of (73) and applying Gronwall’s
Lemma we obtain

pel, \w=1 pEl, MIm
5um,, K Ulhm ) ~ 2 5TK 2
< OUNm A E gr — pmp gm,p dr
N2g2 0 T T N202
pEln

1
— Hm’p <C sup | a, + Q0 (m)
N2 vl r€[0,s] { Z
with
C =exp (5770 °K?). (74)
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Hence, by (70)

t
%Z“zm,p_vtpfSTCa / sup {a +ZaT(m)} ds

peln 0 rel0,s] i—2
4

t t
< TCo? / sup alds + Z/ SUp Al ds | . (75)
0 rel0,s] : 0 rel0,s]

=2

The next step in the proof is the definition of the following stopping time. For ¢ > 0 and
e <exp (—¢T)6%/T, define

7(€,¢) = inf {t €[0,7]: Z ‘Vtmp Vp‘ = eexp (tc)} (76)

peI’VL
Remark 3.19. The random time 7 (€, ¢) is the time at which the L? distance between the N
tragectories V,, and V™ differ on average by more than exp (—c(T —t)) 62/T(< 6%/T).

The crucial idea of the proof is to upper bound the left hand side of (69) by

nh_}rgo%log (m max Q" ({7(€,¢) € [unm, (u+ 1)77m]})) )

see (78) below.

The proof proceeds iteratively through the time steps: we show that if 7(e,¢) > un,,
for u =0,---,m — 1 then with very high probability 7(¢,¢) > (u + 1)n,,. We show in the
proof of Lemma 3.23 that there exists ¢ > 0 such that for any € < 6% exp(—¢T')/T, for all m
sufficiently large, for all 0 < u < m,

lim % log Q™ <7’(e, ¢) € (W, (u+ 1)7}m]) < —M. (77)

n—o0

Indeed this suffices for proving Lemma 3.16. We have

2
3 D= = e <t

pEIn

{ sup ]\1722“/””) th’2252/T} C {r(e,c) < T},

pEln

and we can conclude that

o" ({ sup % > — VEP > 52/T}) Z ({7(e,¢) € [unm, (u+ 1)nml}) -

t€[0,7] pEln u=0
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This commands that

— 1
lim —log Q" ( sup
n—oo N t€[0,T] N2

Z LA 52/T)

pEln

< lim Nlog (m max Q” ({7(e, ¢) € [unm, (u+ 1)7]m]})> < —M, (78)
n—oo
by (77), so that we may conclude that (69) holds.

It remains to prove (77) which requires the four technical Lemma 3.20 to 3.23 below.
Proof of (77): Fix e < 0% exp ( — ¢T')/T. We first establish that

Yot

v=0

@ (vl e [unm,<u+1nm)<c2n@ :

“and 7(€,¢) > unm>, (79)

for the following events

. €
B = I — 1 =1,2.3 80
{ o e < g o= 12 Y
Bi={aly, < gos e ome) f o =00 (51)

the constant C' being defined in (74). Taking the complements of the events, (79) is equivalent
to

o ) ()52 or r(e.c) < i) < Q" (rle.e) [+ 1) )

Jj=1 v=0

Now, using the equality P(AU B) = P(AN B°) + P(B),
3 u
Q”(ﬂ B ﬂ B2 or 7(e,¢) < unm) =
7j=1 v=0
( 3

Jj=1

ﬁ‘BA‘ and 7(e, ¢) > Uﬁm) + Q"( (€,¢) < unm>, (82)
and

@ () # [ 1)) = @ () <) +Q" (rler©) = (w1 )

It therefore suffices for us to prove that

Q" ( ) (B2 and (e ) > unm) <qQ (( Q) > (ut 1>nm). (83)

j=1 v=0
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Indeed, if the above conditions {®87},7 = 1,2,3 it follows from (75) and (80), that for
t € [unm, (u+ 1)y, ie. for ™ =un,,,

3

1 B ~ t t t
s = ([ s 3 [ o ot [ i

vl r€[0,s] =2 r€[0,s] r€[0,s]
t
< e+ TCO'Q/ sup afw ds. (84)
0 re€l0,s]
Because the conditions (81), {B2}, v =0, -+ ,u, are all satisfied we can write
t (v+1)n t
/ sup ar(m) ds = Z/ sup ol m) dS + / sup afw ds =
0 r€[0,s] VN, r€[0,5] wim 7“6[0 ]
u—1
Nm Z sup ozf(m) + / sup o m) s < Z exp cun, + / sup Oéf(m) ds =
=0 r€[0,v1m] unm T€[0,s] unm T€[0,s]

t

u—1
€Cm

€N, €y expe(u A+ 1)n, — 1
TCo? ; XD Wlm = 7r e g2 exp e, —1

Since x < expx — 1 for x > 0, it follows that

t
/0 SUP (U ds < TC<72 (expe(u+ 1)n, — 1),

rel0,s]
and, because of (84),

% SVt =V < cexpe(ut 1) (85)

pEln

for t € [unm,, (u+ 1)ny).

This means that if conditions (80)-(81) are satisfied, and 7(e,¢) > un,,, then 7(¢,¢) >
(u + 1)1, and we have established (83).

Now

Q" ( U e and r(eq) > unm) <

7 _ é@" ((%j)c> + Z Q" ((‘Bﬁ)c and 7 (e, ¢) > unm), (86)

v=0

We use the following four Lemmas
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Lemma 3.20. For any M > 0, for all m € N sufficiently large,

1 €
lim — log Q" > < —M.
iy e @ (32}3%} @ = 3TC<72> =

Lemma 3.21. For any M > 0, for all m € N sufficiently large,

— 1 9 €
— n > < —
Mm 7 log @ (ﬁ%%} Ham = 3T002) =M 57

if the function ¥(n, ¢,) : N — R* defined in the proof is such that lim,, ;00 Nm(n, gm) =
0.
Lemma 3.22. For any M > 0, for all m € N sufficiently large,

— 1 3 €
_ n > < — .
nhrn Nlog@ (52}?]%”’) STC 2) M

Lemma 3.23. For any M > 0, there exists a constant ¢ such that for all m € N sufficiently
large, all 0 < u <m and all 0 < v < wu and all € < exp ( — cT)52/T,

lim — log Q" (

exp (vn,c) and T(e, ¢) > unm) < -M.
n—oo [N

U"]m — TC’ 2

It follows from Lemmas 3.20 to 3.22 that

— 1 )
lim Nlog@”((%J)c) <—-M,j=1,23

n—oo

and from Lemma 3.23 that
— 1
lim i log Q" ((B;)" and 7(e,¢) > uny,) < —M,

n—oo

for all 0 < v < u, for m sufficiently large. This means that

3
nlggl()— log @ (L_J U ¢and 7(€,¢) > unm)

< nh_g)lo— log <i Q"( ) Z Q”( (B¢ and 7(e, ¢) > unm)>

— 1 .
< Jim - togu+ ) max { (<%J>C), @ (82 and r(eve) = un, ) |
n—00 7,0
= 7111—>_I£1<>H]1%X {% log Q" ((‘Bj)c>, %log Q" ((‘Bi)c and 7(e,¢) > unm) } < —M.
We can therefore conclude (77), and this finishes the proof of Lemma 3.16. O
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Proof of Lemma 3.17. By (46) we write

DX, i) < 301 [ 1) = £09)] 4 déluv)

1EZ

for all stationary couplings ¢ between fi,,(X,,) and fi,,(Y,). Because of the stationarity of &
and the Lipschitz continuity of f we have

D2 (), fin(Ya)) < b / /() = £, de(u,v) <
) 1/2
b/ |u® = 0|, d€(u,v) <b (/ |u® —2°|| . dg(u,v)) ;

where b is defined by (7).

Consider the set S,, of permutations s of the set [,,. If X,, = (X", .-+ X™), we note
s(X,,) the element (X*(=") ... X*() The knowledge of ji,(X,) does not imply that of X,,,
in effect it implies the knowledge of all s(X,)s without knowing which permutation is the
correct one. Choose one such element, say so(X,). Similarly choose s1(Y,). There exists a
family of couplings® &% such that

1
[ 1 =0l dertu) = 5 3 e -y

kel,

from which we obtain, for s = sgs]"

X b?
DT,LQ(ﬂn(Xn>7Nn(Yn))2 < N Z HXk B Yk”i? ?

kel,
which is the announced result. O

The proofs of Lemma 3.20-3.23 are found in Appendix D.

3.6 Characterization of the Limiting Process

We prove in this Section that the limit equations are given by (14), i.e. Theorem 2.5.iv. This
is achieved by first showing that the solution to (14), without the condition that p, is the
law of Z, is unique and has a closed form expression as a function of the Brownian motions
W3, This is the content of the following Lemma whose proof can be found in Appendix E.
This proof is based on an adaptation of the theory of Volterra equations of the second type
[26] to our, stochastic, framework.

For example £°(u,v) = % Yicr, Osiso(x,) (Wgis(s, (v,)) (V)-
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Lemma 3.24. Let € Ps(T%). The system of equations (14)
V] = oW/ +0/ 07ds

03_0—22/ Li7(t,s)dV; .

1EZ

has a unique solution given by
Vi —aWJ+Z/ (/ Li(s,u dW’”) ds+

iz / ( / MG ( / L (u,v) dwfﬂ') du> ds, (88)

where M[f 15 defined in the proof and satisfies

sup Z}Mk (s,u)

$,u€(0,t]

i1,lET

Note Q™™ the law of the solution to (31). Lemma 3.16 indicates that II"™" = Q™" o
[, (V) satisfies an LDP with the same good rate function H as I1".

Lemma 3.25. The limit law of Q™™ when m, n — 00 1S i, the unique zero of the rate
function H. Moreover, for all k € I, t, s € [0, T

m,n—o00 [N

Proof. We know that H has a unique zero, noted p,. This implies that II"™" converges
weakly to d,. and therefore, for all F € Cy(P(T%)),

lim F(p) dIT™(p) = F(p.).-

m, n— 00 p(TZ)

From the relation TI"™" = Q™" o fi,,(V™)~! we infer that
lim F(fin (V") dQumn (V") = F(p).

m,n—00 | N

Let us choose a function f € C,(T%#) and define F : P(T%) — R by

Fp) = - fOV)du(V),

33



so that we have

lim FV) diin(V;")(V) dQ™" (V") =

m, n—o0 TN TZ

lim Z fSZVm aQmm(vm) / fOV)dp. (V)

mn—>ooN

We note that Q™" is invariant under a uniform shift of the indexes, i.e. satisfies
Qm,n o Sz — Qm,n
for all 7 € I,,, so that
iel,
and therefore

lim FV)dQ™ (V") = f (V) dp (V).

m,n—o0 | N

Since this is true for all f € Cy(T%) we have proved that the limiting law of Q™" is .
Next consider the function F': P(T%) — R

F(:u) - Lﬁ(t7 S)

for a given k € I,, and ¢, s € [0,T]. We have

lim Lgn(vm(t, $) dQ™™(V") = LY. (t,s),

m,n—00 N
which also reads
ok _
ml}erooE [L Ly (ts) — Ly (¢, s)] = 0.
We now prove Theorem 2.5.iii

Theorem 3.26. The equations describing the unique 0, p.., of the rate function H are (14).

Proof. We prove that for all n > 0

Iim E

m,n—0o0

sup ‘GJ 9””}2] =0

s€[0,t]

Indeed, as shown below, this is sufficient to prove that

lim E

m,n—o0

sup ’V] VSmJ |

s€[0,t]
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We recall that the equations (37) satisfied by V™ are, for j € I,

t
V" = oW + a/ 071 ds
0

: ~An (Vi)
m,j =2 7“” n m,0
6 =02 Y EV G |

i€lgy

t(m)

i€1gm

t(m)

mfi m,l“l’j
G o dVy }

We also have, for j € Z.

0l =02 / L, (t,s)dVit.
0

1E€EZ
Write
t
(9? - 9?’3 —g 2 Z / (LL* (t,S) — LL* (t(m)7 S(m))) dvgﬁj }Ozi’l
iEIQm 0
t
i€y, t(m)
t(m) . ' N |
AP / (Lh (1, 5) = L, (o (@, 50)) avitr Laf?
7:ELI'm 0
t
vot 3 [ e Lo
0

i€Z/1,,,
+o 2 ) / L,y (8 ™) (0259 — 077 s,
0
so that we have

t(m)
S [ B 0@ — g9 s,
0

i€Ig,

4
o o
6 — 0y =3 ol o7
k=1

To simplify notations further we write Li, (£0™, st™) for Lt (£, ™) since there is no
ambiguity, and define ' . .
o] =0 -0, jel, tel0,T].

The previous equation writes

4
<I>{ = Za{’k + o072 Z /
k=1 0

ie[‘hn

t(m

)
Lt st s (89)

This is a Volterra equation of the second type [26]. We solve it for ® as a function of the as
and use the following Lemma whose proof can be found in Appendix F.
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Lemma 3.27. For all € > 0, there exists mgy(e) in N such that for all m > my

E| max sup ’ajk‘ < (Ce

k=1,2,3 456[0 4

for some positive constant C' independent of j.

Since equation (89) is affine we solve it for each o, k = 1,2,3,4 and add the four
solutions. In what follows we thus drop the £ index and solve

t(m)
) =ol + 072 Z/ LE ™ sm))h+i g,
k€lgn,

We take continuous Fourier transforms of both sides to obtain

t(m)
B:(i0) = (i) + 0~ / L2 (o)t )b, (o) ds,
0

*

indicates complex conjugate and, for example

= ®le7*, pe[-mnl,

J€ln

where

and, as explained page 26, the Fourier transform of L’ is given by:

L(@) (™ sty =3 "1y, ()LLE™, s")e 2, ¢ € [—m, .

j€In

We use standard results on Volterra equations [26] to write
t(m)

Dy(p) = () + A 0 H(p)(t"™, "™ X)a(p) ds, (90)

where we have noted A = 0=2, the “resolvent kernel” H(¢)(, s, \) is given by the series of
iterated kernels

ﬁ(@) (t(m)a S(m)? /\) = Z AZE:L,Z—&-l (@) (t(m)7 S(m))u (91)

and -
t m
It ()™, stm) = / L2 (@)t ™) T2 () (u™, 50) d

The convergence of the series (91) is guaranteed by the fact that the two functions

An(p,t)* = /OT

2

dt

Eu()(t, )| ds and By(p,s)? = / La()(t,5)
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are upperbounded by T2a?b? independently of n, thanks to Proposition C.8. The theory of
Volterra equations then guarantees that

H(p)(t"™,s'™ ) < C

for some positive constant C' independent of n, m.
Equation (90) then implies that

- 2 ¢
Bue)| <20 +20°C° [ o)l ds

By Parseval’s Theorem

t
SlelP <2y |agf+2vc2/ S Jad]? ds.
j€ln j€ln 0 jeln,

Taking the expected value of both sides and using the spatial stationarity of (®7);ez, and
(o) jer, we have for any j € I,

E|[of]"] < 2B ||od[] +24%c? /Ot]E [|od[’] ds.

Since by Lemma 3.27

E | max sup ‘O‘g’kf =0
k=1,23,4 5¢j0,4)
we conclude that
lim E | sup [6] — 617" | =0,
m,n—o00 s€[0,t]

and therefore
t . 1/2
sup |V — V™| S/ sup [0, — 0] ds < Vt / sup (65— 67)" ds |
36[07t] 0 pE[O,S] 0 pE[O,S]

and by Cauchy-Schwarz again

E | sup [V - V"]

s€[0,t]

. T\ 1/2
/ sup (92 — 92”)2 ds
0 p€l0,s]

:\/g(/otm -

sup |V2 =]
s€[0,t]

forall j € Z and t € [0,T]. O

<Vt <IE

pE0,s]

. 1/2
sup (92—9?’02 ds) .

We conclude that
lim E

m,n—00

=0
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A A martingale Expectation Inequality

We recall the result used in [1]:

Lemma A.1. Consider B™",--- , B™ N independent Brownian motions and h™",--- ,h"™ N
previsible processes such that N1 > el (hi)2 < 1. Then, for alle < 1/(2V/T), we have

E{exp{;;v Z (/OT hing‘)ZH < (1 — 422T) "N/,

i,j€In
Proof. Define a := £, X/ = [/ hidBI, S, = Dier, (hy)?, and Yy = 30, (X/)2. Using
[t6’s rule we obtain
t
i=2>" / hi (/ h;ng) ng+N/ S, du.
1,J€In 0

Define the martingale

Z, = Z/hZ (/ h;ng) dB’.

Z jeI'IL

Using the fact that (B7, B'), = §;t, we have

Z /hih’; (/Osh;ng) (/Oshgng) ds.
< (Z(h@)?) N (Z ([ de;)2> "

’LEI’n ’Le[n

Apply Cauchy-Schwarz to obtain

> |n: (/Sh;ng;)
0

i€l
from which it follows that

t
(Z, Z) = (2, 2} < / S. Y, du.
0

Now we have

aY; _  2aZi+aN Jy Ssds _ o202t —4a>(Z, Z); 402(Z, Z)1+aN [} Sudu

(& X e
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Apply Cauchy-Schwarz again to obtain

E [ant}? <E |:€404Zt—8a2(Z, Z>t] < E |:€8042 St Sy Yu dut2aN [!5, du] '

By supermartingale properties, the first expected value in the right hand side of the previous
inequality is bounded by 1, hence

E[e aYt} <E [ 8a2 [! S, Yu du+2aN [!S, du}
Now use the fact that S, < N uniformly in u to conclude
E [ant] 2 < 62aN21E E [68a2N fot Y. dui| _ 652Nt E |:e452a fg Yu dui|
then use Jensen’s inequality to obtain

t
E [eO‘Yt}Q < s Nt %/ E [645%"”"} du.
0

If 462t < 1 we can use again Jensen’s inequality

2Nt

t ) t 22
E )’ < o2 /0 (B [])"" du =" /0 (%)) du

Define g(t) :=E [an’f}Q, the above inequality reads

2Nt

o(t) < / (9(5))*" ds.

Since 4e*t < 1 implies 26t < 1 we can apply Bihari’s Lemma [17, Chap. 1, Th. 8.2] to
obtain

1 o2
E [ant} < <(1 o 262t)€82tN> 2(1-2¢2t) < GQ(I_QtEQt)N
and, since 1 — 4et < 1 — 2%,

2t 462
E |: Cd/ti| < e(1- 482t)N — 6(17182t) /4

and, since —7%= > log(l — ), 0 <z <1

E [ ozYt} <e log(l—4€2t))
[ aYT} ( 4€2T)7N/4.
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B Discrete Fourier Transforms (DFT) of Gaussian pro-
cesses

27

Define Fy := e~ . Let a := (a/);es, be an N-periodic complex sequence. Its DFT a :=
(@P)per, is defined by
P = Z ajF];jp,
J€ln
from which the original sequence can be recovered by the inverse DFT (IDFT)
al = EK; :E:: dp}?i?.
p€ln

We need two Lemmas about the DFT of N-periodic sequences defined on I,,. The first one
is about the DFT of a translated sequence.

Lemma B.1. The DFT of the sequence ay, := (a’**),cr,, k € 7 is given by
DFT(a)P = FiP aP
Proof. The proof is left to the reader. n

The second Lemma is about the DFT of the convolution of two sequences. Let (a?)er,
and (V) ;jer,. We define their (circular or periodic) convolution as

(a%b)! = Z a* =k = Z a’Fpk,
kel kely

where indexes are taken modulo 7,,. We have the Lemma.

Lemma B.2. o -
DFT Yaxb) = Nda'¥,
and hence .
(@xb)? = N DFT(ab)?
Proof. The proof is left to the reader. O

We derive some properties of the Fourier transforms of the synaptic weights (J9Yi jer,

and the Gaussian processes G7. We define (R (p,1))picz, to be the length N DFT w.r.t to
the first index of the sequence (R (k,l)xer, ), that

Ry(p.l) =Y Ry(k, hW"™.

kel,

We first characterize the joint laws of the synaptic weights under ~.

2 There is no conflict with the definition (8) since they are always used in different contexts.
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Lemma B.3. Define
TR =N TRET,

Jj€ln
to be the DFT of the synaptic weights J'* w.r.t the first index. Their covariance is
B [ 2] = { Ry(p.k—1 mod L)  if  p+q=0

0 otherwise

Proof. By (3) and the symmetry of R

o , : 1 ‘
B[R] = 30 B [ FPRS = Y Ralh— 0= k)FREM =
J,h€ln J:h€ln

1 , o
~ > Rg(j—h k= D)FyPF™,

J,heln

By Lemma B.1 we have

> Ry(j—hk—)Fy"" = Rs(p.k — )Fy",

J€In

. —h(p+
and, since ), ., Fy Pt — NG,

Y

1 _ L R k1 i o0
NZRJ(h—j,l—k)FN”Fth:{ a(p ) i p+q

— 0 otherwise
.]7 e n

]

Remark B.4. In the terminology of complex Gaussian vectors to be found, e.g. in [11],
Lemma B.3 states the following. Consider the N centered complex N-dimensional Gaussian
vectors JP = (JP*)er,, p € I,. Note that the complex conjugate JP* of JP is J. P, p € I,,. If

p # 0 JP is such that its pseudo-covariance matriz E [jf; tj};] = 0 and its covariance matrix

E” [jﬁtjn’p] is equal to the circulant matriz C? := (Ry(p,k — ))gser,- If p = 0 JO is in

effect real and its covariance and pseudo-covariance matrizes are both equal to C°.

Remark B.5. Note that the covariance matrices CE = E7 [jﬁ tj;p] , D € I, are circulant

Hermitian, i.e. C? = 'CP*  because Ry is even. They are positive definite because, being
circulant, their eigenvalues are the values of the length N DFT of the sequence (R (p, k)) ke,
which are positive because Ry is an autocorrelation function hence has a positive spectrum.
Hypothesis (9) guarantees that for N large enough these eigenvalues are strictly positive,
hence CP is invertible.
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Remark B.6. Complex Gaussian calculus indicates that the probability density function
under v of JE, p # 0 is

) 1 Ly, [Coo0 770 T2
N Y ltj-p t7p n ol

and, since CP is invertible (see Remark B.5),

Remark B.7. Note that Lemma B.3 implies that the complex centered Gaussian vectors jﬁ
and j,‘{ are independent under v if p+q # 0. Indeed, complex Gaussian calculus indicate that
the four jointly Gaussian N -dimensional centered real vectors Re(JP), Im(J?), Re(J4), Im(.J9)
are independent if p+ q # 0.

Given a Hermitian matrix A of size N, we note A\;(A) > --- > Ay (A) its eigenvalues. As
a consequence of Lemma B.3 we obtain a useful upper bound.

Corollary B.8. For alln € Z", all p € I,, and all vectors ¢ = (¢?)jer, and & = (&) je1,, of
RY,

< abic]l, lIll;

sup
pEln

a and b are defined in (7).
Proof. According to Remark B.5 we have

szm%ﬁ

J,k€ln

Z EY [jgj j;pk} ngk
I

Jk€ln

= | f¢ccre| < CI, 11¢I, 1€l

Next we have ||C?||, = A (C?), where \;(A) is the largest eigenvalue of the Hermitian matrix
A. By Remark B.5 the eigenvalues of the circulant matrix C? are the values of the DFT of the
sequence (R (p, k))ier,. According to (5) and (7) they are all upperbounded in magnitude
by ab, and so is [|CE||,.
[
Let (Z]), j € I, be an element of TV. We recall the definition of the centered Gaussian
field (GY):
Gl=> T2,
lely

Taking the length N DFT of the I,-periodic sequence (G7);cr,, we introduce the following
I,,-periodic stationary sequence of centered complex Gaussian processes (G?),er,

GY=>"Jrf(z)). (93)
lel,

We have the following independence result.
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Lemma B.9. If p+q # 0, under yfn(Zn) - the centered complex Gaussian processes (GP),
and (G9)s are independent on [0,T] and

e ) - { Toee Rolpl=R)F(ZDSZE) i pta=0

otherwise

Proof. We write

GY =) _Jrf(Z)), Gi=>_Jrf(2h),

leln kely

The independence under v#»(%») follows from the independence under v of J? and J7 if
p+ q # 0 proved in Remark B.7. Moreover

B GG = T BT | F(2)(2E).

Lkel,
The result follows from Lemma B.3. O

We recall the expression (21) for A¢(G)

exp{ 57 fo 2 ket (Gk) ds}
[Fyin(Zn) [exp {_F fo Zkeln (G§)2 ds}} )

t 2
exp {—ap/ ds}
AP(G) = 0 s
[Erfin(Zn) {exp{—ap/ GP ds}}
0

S
where ag = %+N> a, = UQLN, p # 0.
Define also U " to be the N x N symmetric positive semi-definite matrix with elements
UM = [0 F(ZD) f(ZF)ds, j, k € I,

M(G) =

and define
G?

p€El,, (94)

Lemma B.10. The A’(G), p € I,,p > 0, are independent under v*»(%») and we have
I &G (95)
p€ln,p>0

Proof. By Parseval’s theorem

PICAREES itcil

kely, pELln

since the G*s are real, G = G;7*, and we have

SEr-gleftx ¥ e

p€ln,p>0
43

2

Y



so that

Note that

implying that

kel p=0
and hence
an(Zn) 1 ¢ k 2 _ - t 7— n T
E” lexp {—T‘Z/O kezl (GY) ds} =K In)exp{—ap JPU Jﬁ}

Because of the independence under v, proved in Remark B.7, of jﬁ and j;{ ifp+q#0, we
have

n

Hexp {—aptj,:prjfj}

p=0

EY

= HIW [exp {—aptj;prjﬁ}]
p=0

— ﬁ]E’\/ﬁ”’L(ZTL) eX _ 1 /t
P No? 0
p=0

and (95) follows.

The independence under y##(%») of the Af (é), p =0,---,n, follows from the indepen-
dence under 7, proved in Remark B.7, of j,’; and j,‘{ if p+ q # 0. This concludes the proof
of the Lemma. O]

We next characterize the law of (J?,p € I,,) under the law Afin(Zn) Ay(G) - Afin(Zn),

Proposition B.11. For any Z, in TV, any p, q € I,, p+q # 0, jﬁ and jg are, under
,—an(Zn) independent centered complexr Gaussian vectors. The covariance of JP under 7, n(Zn)
15 given by

in(Zn)

o A (CARER O
Proof. By Lemma B.10 and Remark B.7 we write
Dapnn (2, I1) = py (I, TOA(G)AL(G) = py (JD)AL(G) % p, (JIAL(G),

and the independence follows.
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Next we have

exp {—Ozptj,ij{‘j};}
EY [exp {—aptjEpUt”jﬁH ’

and since oy, and U} are real and U]" is symmetric

n P
ol [ 8]
t n

Ev [exp {—ozptj{pU[‘jﬁH

A(G) =

A (G) =

Combining this equation with (92), we write

1
TN |det(CR) |EY [eXp {_ap tjngglng

.1 t ~_p t ~p ((7%)_1 %‘(lpl[ﬁ 0 JT
% eXp{_z [ I ‘]"] 0 () a,Ur || T |

which shows that, under 3/ #), JP is centered complex Gaussian with covariance ((C?)~!

a,Ur) ! O

pw(*jg)[\i) =

Corollary B.12. The centered processes éf and Gg, p,q € I, are still Gaussian and inde-
pendent under 7, n(Zn) for all s <t except for p+q=0. Moreover

~hn(Zn)

gl [@;@;p} — g [A'f‘@@fégﬂ .

Mn(Zn)

Proof. By Lemma C.9 the process (GF)rer, teo,r) is Gaussian centered under 7; and

therefore so is the process (G? el tefo,r]- By Lemma B.10

~An(Zn)

B [Grea] =B [A(G)GrGr| =B |G f[ AL (G)

r=0

=B | GrAPIG)GIAY (@)
By rewriting the last term in the right hand side of the previous equation as a function of
J” and Jq and applying Proposition B.11 one finds that if p+ ¢ # 0

Mn(zn)

B GrG] =B [GRAPIG) | B | GEAKG) | = o.
Therefore, for all p,q € I,,, p+q #0
—in(Zn ~fn(Zn)

B [éfég} —E [éfé;q} =0
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This implies that the four real and imaginary parts of é’f and ég are uncorrelated and
therefore, being Gaussian, independent. If p4+¢ =0

~hn(Zn)

B [Gfé;p} = g [At(G)éfé;p} ,

and by Proposition B.11

~hn(Zn)

bE (el B IV (eletend
forallpe l,andall 0 < s <t <T. ]

Remark B.13. Note that since C? is Hermitian positive definite, it is invertible and its in-
verse is also Hermitian positive definite. U}* is real symmetric positive hence also Hermitian
positive. The sum (CE)~ + a, Ul is therefore Hermitian positive. The dual Weyl inequality
[25] commands that

Aij-n((CR) ™+ apU) 2 N((CR) ™) + A U7)

whenever 1 < i, j, i+ j— N < N. Since (C?)~! is Hermitian positive definite for N large
enough, and o, U} is Hermitian positive, this inequality implies that Ay((C?)™* + a,U*) > 0
and hence that (C2)~' + a, Ul is invertible.

Nezxt we have

1 1
(@D T+ apU7) = MUCE ) + M(apUp)

M(C) T +a,U7) ) = 1

for 1 <i,5 <N andi+j=N. Since \j(a,,U}*) >0 for j =1,--- N and \;((C?)™1) >
AN ((CPY™H) = A\ (CP)Y™t >0 foralli=1,--- , N we conclude that

p\—1 n\—1 1
M(((CR) "+ apUp) ) < nen = (96)

for some positive constant C'y independent of N and p.

In several places we use the following Lemma.
Lemma B.14. For alln € Z+ and Z € TV, and all vectors ¢ = ({?)jer, and & = (&) jer,
of RY,

sup
pEln

< Gy liclly Ngl,

B |86 e

J,k€ln

where C is defined in (96). AP(G) is defined by (94), G? = > el JPLF(ZY), and || ||, is the

usual Buclidean norm.
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Proof. We use Proposition B.11. We define D? := ((C)~' + o, U")" ', p € I,,, p > 0. We
can write

> ﬂi”““z”)[Af<(?>J2jJ;pk]<jék:= '¢DrE,
1.kel,

hence

= |'¢Drg|.

Z Efyﬂn(zn) [A? (é) jﬁj jn—pk:| C—]gk

J.kEIn

Considering the Euclidean norm in RY and the corresponding matrix norm, both noted || ||,
we have

| ‘CDRe] < 1Dy lIcll, llE -
By definition of the Euclidean norm, | D2, = A;(D?) < Cz, by Remark B.13. O

C Covariance functions

C.1 Time continuous setting

One of the basic constructions in this paper is the following. Given a measure p € Ps(T%), an
integer n (possibly infinite), and a time ¢t € [0, T, define the following sequence of functions
Ki: 0,1 =R

Kisn) = S Ralhd) [ 100 dute), (97)

for s, w € [0, t]. The summation w.r.t [ in the right hand side is either over the set I, for
finite n or over Z. The index k in the left hand side has the same range as [. In case of
n infinite, the right hand side is well defined because of the absolute summability of the
sequences (R (k,l))ez for all k € Z and the fact that 0 < f < 1. In the case of n finite, the
sequence (Kﬁ)kefn, noted Kg’k, is N-periodic.

It is easy to check that the sequence (Ki(s,u)); of functions is the covariance of a
centered stationary Gaussian process noted G2, with s € [0, ¢] and j is in I, for finite n or in
7. otherwise. There are several possible representations of this process. In the case of finite

7 wWwe use
Gl =Y JFfh), (98)

kely

and noted 7”1" the law under which it has covariance K7, i.e.

B [GIGI] = KM (s, u),

see the proof of Lemma C.2 below. A second representation is provided by the considera-
tion of the operator defined by the sequence K Zj This operator is defined on the Hilbert
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space L*(Z x [0, t]) := @,c,, L*([0,t]) (or L*(I, x [0, t])) of infinite (or finite) sequences of
measurable square integrable complex functions ¢g* on [0, ¢] such that

t
Z/ 1647 ds < oo,
k 0

where, as usual, the summation w.r.t. k is over I, for n finite or over Z otherwise. In the
sequel we treat only the case of infinite n, i.e. I, = 7, the case of n finite being easily
deduced from this one.

We prove in Lemma C.1 that the operator K, acting on L*(7Z x [0, t]) by

(f(ug)]; = Z/Ot Kl (s, u)gl, du, g € L*(Z x [0, t]), (99)

is continuous, self-adjoint, and compact.
Note that by Fourier transform the space L?*(Z x [0,t]) is isomorphic to the space
L3([—m, 7] x [0,¢]). Each element g of L*(Z x [0, t]) features a Fourier transform ¢ such

that
Z gk 71k<p

where the series in the right hand side is absolutely convergent. For each ¢ € [—m, 7],
3(p) € L2(0.). ) ]

By the convolution theorem, the operator K, on L*(Z x [0,t]) induces an operator K,
on L?([—m, 7] x [0,]) acting on such functions by

(£3) (9)6) = [ Ko o
u) = ZK;’j(s,u)e’iW.

Lemma C.1. The linear operator K, defined by (99) maps L*(7Z x [0, t]) to itself and is
continuous, self-adjoint, and compact. Its norm is upperbounded by abt.

where

Proof.
1) Well-defined and continuous:
We prove that K, maps L*(Z x [0, t]) onto itself. In effect, by Cauchy-Schwarz

1/2

(/ o) d“> (/ o] d“> - (100)

(Fuo),
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By Young’s convolution Theorem, 0 < f <1, (5) and (97)

(pinat)=ln

t 1/2 t
Z (/0 |Kl’f(s,u)‘2 du) X (Z/o }gmz du) < ab\/EHgHL?(Zx[O,t])
k

k

so that,

_ tyo 2
||KN9HiQ(Z><[O,t]) - E :/0 ‘(Ku 9)5’ ds < a’b*t” HgHiQ(ZX[O,t]) ;
k

and therefore K, is well-defined as a linear mapping from L*(Z x [0, ¢]) to itself , bounded
and therefore continuous with HKM”m(Zx[o,t]) < abt.
2) Self-adjoint:
This follows directly from the identity K}:(u, s) = K *(s, u).
3) Compactness:
We sketch the proof. We use the Kolmogorov-Riesz-Fréchet Theorem [2, Th. 4.26] for
the compactness of bounded set of LP(R™), the analog of the Ascoli-Arzela Theorem for
continuous functions.

Let g € L*([—m, m| x [0,t]). Let h = (hy,hy) € R%. We define the operator 7, :
L3([—m, 7] x [0,¢]) —> L3([—m, 7] x [0,t]) by

(7h9) (0, 8) = G + h1, s + ha),

where the values are taken modulo 27 and modulo ¢, respectively. Given a bounded sequence
(G")ken of L*([—m, w1 X [0,¢]) we want to prove that the set (K,j") is relatively compact.
According to the Kolmogorov-Riesz-Fréchet Theorem, it is sufficient to prove that

=0 (101)

i ([ (,9) ~ ()
h( ug) ( “g) L2([—m,m] x[0,t])

|h|—0

uniformly in k. In effect we have

2

(R, = (5,5

]

L2([—m,m] x[0,t])
2

/ u(@ + hi)(s+ ho,u) — K’M(go)(s, u))§* (o, u) du| dpds. (102)
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We write, by (97),

Ryl + ) (s + hoy ) — Ko(i2) (5, )
=Y Rylp+ ) /T F02) £ (L) dpa(o) — Ror(p.1) /T SO £(0h) dpu(w)

=4

=N (Rolp+h.D) = Ro(p.) | F@0,)F(0)) duv)
T

leZ

S0 Ralend) [ (FO) = SO SO0 dutw). (103

€7
where we have noted

Ry(p, 1) = Ry(k,l)e=™*.
k

We first upperbound the magnitude of the first term in the right hand side of (103). By the
mean value theorem and (6)

R+ hu.0) = Ry (0. )| < Ial D2kl B (ks )] < [l b0 K.
k k

Because of 0 < f <1 and (6) again, we have

< Cilhl, (104)

S (Rl )= Role) [ 12 0(ed) duto

leZ

for some positive constant C'.

We next upperbound the magnitude of the second term in the right hand side of (103).
First, thanks to the Dominated Convergence Theorem, the function s — [ f(v?) du(v) is
continuous on [0,¢] 0 < ¢ < T, and hence uniformly continuous,

e 030(6) 2 0, il <6 | [ (£(ekh,) — 2 duto

<e. (105)

Second, |Ry (¢, 1)| < aby.
Combining (102)-(105) with the fact that (§*); is bounded and Cauchy-Schwarz implies
(101). O

We now prove that K . 1s non negative.
Lemma C.2. The linear operator K, defined by (99) is non negative.
Proof. Consider
Gy= L f@)).

J€In

20



This implies, because of (3) and the stationarity of p, that

B [GiG] =B LZ JITRFI) f )] _% > Rk —i, 1= B [f(0])f(v))]

lely, Jleln,

_ % 3" Rk — il — B [f(0)f ()]

JlEln

=Y " Ry(k—i, DB [f(00)f(0h)] = K* (s, w),

lely,

from which it follows that

(K39:9) 120, xi0) = Z/ (/ K”klsugudU) (95)" ds

ki€l
//IEZw [GEGL] ¢ (gh) duds

klel,

_Ew“" Z/Gk

kel,

> 0.

We conclude that K is positive as an operator on L*(I, x [0,]) and hence, taking the limit
n — oo that K, is a p081t1ve operator on L?(7Z x [0,t]). O

We have the following Lemma related to the Fourier representation of the sequence

(Kﬁ(sv u))keZ-

Lemma C.3. The sequence (K (s, u))rez is the Fourier series of a three times continuously

differentiable periodic function [—m,7[— R, ¢ — K,(¢)(s,u) which is continuous w.r.t.
(s,u). This implies that the KJ;(s,u) are o(1/|k|*). Furthermore this convergence is uniform
m s, u, (.

Proof. It follows from Lemma C.1 that for all s, u € [0,] that the sequence (KJ(s,u))rez is

the Fourier series of a continuous periodic function [—m, 7[— R, ¢ — K,(p)(s,u) which is
continuous w.r.t. (s,u). By definition

u) = Z Kﬁ(s, u)e ke,
k
where the series in the right hand side is absolutely convergent. By (97) we have

Qo) =3 Rolol) [ 10DIC ),

and the order three differentiability of K, (p)(s,u) follows from Remark 2.3 as well as the
uniform convergence of K}(s,u). O
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We have the following useful result.

Lemma C.4. We have
‘f(ﬂ(go)(s,u)‘ <ab Vs,u€|0,t], p€[-m |

Proof. By (97)

RJ(@? l)

OEIESD

leZ

Y

where

Ry(p,l) =Y Ry(k,l)e ™.

P/
This implies that

)50 < (Z me\) ,

€7

and, since by (5), (6)

Rato)] < 3 IR (D) <0 ar = ab

keZ. kEZ

We conclude that

]

By Lemmas C.1 and C.2 it follows that the spectrum of K, is discrete and composed of
non negative eigenvalues noted \“, m € N. Let (k%) be a corresponding orthonormal basis
of eigenvectors i.e. such as

K b = MR (B B = G Ym, m! € N

m ''m> m? "“m/

Next define gf, = vV Amhf,, m € N. One has the following “SVD” decomposition of the
operator K.

Kﬁ(s,u) = Z Zgﬁl(l,s)gﬁl(l + k,u).

meN |

Given a covariance (K;)zez we know that there exists a centered Gaussian process (2, A, 7, (G} )rez)
with covariance (K ﬁ) kez. For any such process, if H,, denotes the Gaussian space associated

(the closed linear span of (G})kez in L*(£2, A, 7)), then H,, is isomorphic to the autorepro-
ducing Hilbert space H,, associated to (K /'j) kez by

¢o:H, — H,
Z - E[2G].
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The space H,, C L*(Z,[0,T]) admits (g~ )m>0 as an orthonormal basis. If &% = ¢~1(gt),
then (€% )m>0 is a sequence of 1.i.d. N(0,1) random variables in H,, and we have the following
representation for the Gaussian process G*:

GL="> g, s)&

m2>0

where the convergence is in L?(2,4,7). We note v* the law on (£2,.4) under which the
sequence (G), i € Z, s € [0,1] has covariance K.

Remark C.5. Note that given two measures 1 and ps in Ps(T%) and the corresponding
operators K, and K,,, the operator K := K,,, o K,,, has the following kernel

/Kl’fllval( u) dv,

or, in the (continuous) Fourier domain

and in the discrete case
(s,u) / K}, (v,u)dv, p € I,
Consider the new self-adjoint positive compact operator L, on L*(Z x [0,]) defined by

L,=(Id+0c7’K,) 'K, (106)

and let L, be its kernel:

Lh(s,u) = Z

m>0

HAM nglsgm(l+k w).

Remark C.6. Note that (Id + 072K,)~! and K, commute, i.e.,
L, = (1d+ 0 2K,) 'K, = K(1d+ 02K,)"",

as can be readily seen by noticing that both sides of the previous equality are equal to

o? (Id — (Id + U’QKM)A), so that we also have

Li=o*(1d— (1d+072K,)"). (107)

Remark C.7. Just as for the operator K we also use the finite size version L” ofL whose
kernel is written Ly k ke,
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We have the analog of Lemma C.3 for the Fourier transform Eu(cp) of Lﬁ.

Proposition C.8. The sequence (L}(s,u))er is the Fourier series of a three times con-

tinuously differentiable periodic function @ — L,(¢)(s,u) which is continuous w.r.t. (s, u).
The Fourier coefficients of Eu(gp)(s,u), i.e. the kernel (L (s,u))kez of the operator L,
is o(1/|k|®), uniformly in s, u in [0,t] and p. Therefore there exist constants C and D
independent of u such that Vs, u € [0,t], Vo € [—m, ),

> ILi(s,u)l < C

keZ

Z (L/]j(s,u))2 <D

keZ
[ Lu(@)(s,w)| < VD
Proof. 1t follows from (106) and Remark C.6 that

Lue) = (104 072K(0)) Kulo) = Kule) (104 02K, () (108)

The order three continuous differentiability of L(¢)(s,u) w.rt. ¢ follows from that of
K, (¢)(s,u) proved in Lemma C.3. We also obtain the fact that the L% (s,u) are o(1/[k[?)
uniformly in s, v in [0,¢] and p. O

We have the following important Lemma which establishes that the kernels L,’i(s, u) are
the covariance of the centered Gaussian field defined by (98) under another probability law
than ~*.

Lemma C.9. For allt € [0,T] and all s, u € [0,t], under the new law Ay(G) - ", the family
of processes (GL) is still centered and Gaussian with covariance L, given by

E™ [A(G)GIGE] = LEF (s, u), (109)
where
exp {—# >, fJ(GZ;)Q du}
E»* [exp {—# O f;(G{L)z du}] .
In the above, the summation w.r.t. j is over I, for finite n or over Z otherwise.
In agreement with (22) and Remark 3.2 we note 7i' the corresponding probability law on

(2,A)

Proof. Let & be a real number and Gy = "M gr (K, t)¢#. Using the properties of the
basis (g¥ )m>o we have

exp{éGMk—ﬁZ/ (GM)? }]

oo s )]

At(G) =

E"

— ™

o4



Because of the independence of the ¥, this is equal to

M

[T e {omn o - sotenr]].

m=0

and, using standard Gaussian calculus, we obtain

E"

. v L\ 2
exp{—%ﬂZ/o (G2 ds}] = <H(1—|—2—7;)) (110)

B [exp {5Gi”’k DY fot(Giw’jde}] _ { - o (k 75))2}
T las ] o

The same formula shows that the sequence exp {(5Giw oLy y [r(GMay? ds} is bounded
in L'™°(Q, A, v) for any positive real p so that this sequence is uniformly integrable. Tt
converges in probability to exp {5Gf — 5 Y [1(G9)? ds}. We conclude that

exp{—%Z/ot(Gg)zds}] “ 11 <1+2—%>_1/2 (111)

meN

B [exp {5Gf R S N(EE dsH 52 {

E"

= exp —

E7" [eXP {_# 2 fot(Gg)Q dSH :

meN o2

1 2
Z 1+ N (g (. 1)) } (112)

We have computed the moment generating function of G under the new law A,(G)-~*. Tt is
still Gaussian centered with covariance obtained by deriving (112) twice at § = 0 to obtain:

E* [(Gf)Q exp {—# Zj fOt(GZ)Q d‘SH ) X u 2
B [exp {55 32, Ji (G)2ds} | - mZeN 1+ 2% (om(£,2))"

which yields (109) by polarization. O
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Proposition C.10. The application p — L, is Lipschitz continuous: There exists a positive
constant C; such that

|Ll]j(8,U) - Lﬁ(svu” S 0(1/|k|3) OtDt(lu“v V) VS, u € [Ovt]
for all k € Z.

Proof. According to (107) we have

L,—L,=0o" ((Id +0°K,)"

1

—(a+o72K,) )
d+02K,) " (K, - K,) (1d+ 02K,

-1

Define 4, = (Id + U_Qf(#)_l and H, = (Id + O'_QK,,)_l. Using Remark C.5 we have
Lk(s u) — LE(s, u) Z/ / H* (s, 5 (31,32) Ki_j(S]_,SQ))HI'Z(SQ,U) dsy dss.

Let £ be a coupling between p and v, (97) commands that
‘Lk (s,u) — L¥(s, u)| <

Z// ’Hk ‘(5,51 ’|Rj I —j,m)|E$ Hf f(w;?)f(w

l,3,m

m) ] |HZ(82,U)‘ dsy dss.

Observing that f(wg,)f(ws;) — f(w))f(wey') = f(wd)(f(wiy) — flwi) + fwg) (f (wl,) -

f(w?)), we obtain, using 0 < f < 1

S Rolt =g [ [ Vi 5w) = F ) )
< <Z|Rj<l—j, )/|f wy )| dé(w, w')

3 IR jom |/|f W™y — f(w™)] de(w, ).

meZ
Equations (5) and (11) imply

(Z [Ry(l— jom ) / F) = F)] de(w, w') < bﬁ / dy(w, uf) d€(w, u)

meZ

> IR7(1—j.m |/|f w™) — f(w™)] dé(w, w) §al_j/dt(w,w')d§(w,w').

meZ

o6



This commands that
k k
‘Lu(s7 u) - LV<S7 u)‘

t ot
< C’Z/ / |HY (s, 50)| ai—j | H](s2,u)| dsydsy x /dt(w,w') dé(w,w') (113)
7 Jo Jo

for some constant C' > 0. We use Proposition C.8, which clearly applies to H# and H,.
Since convolving two sequences (ci)rez and (dy)rez whose terms are o(1/|k|?) results in a
sequence which is also o(1/|k|?) it follows from (113) that

}Ll’j(s,u) - Ll’f(s,u)‘ < o(1/|k]*) C#Dy(p,v).

C.2 Discrete time setting

In several parts of the paper we use time-discretized versions of these operators. Two cases
occur. The first is that of a general measure in Pg(TZ), typically the limit measure u,. The
second is that of an empirical measure fi,,(V,) or ji, (V). Given a partition of [0, 7] into the
(m + 1) points vn,, = v, with 5, := T/m, for v = 0 to m we deal with the operators K,
and L,. It will be clear from the context whether these operators are defined by a finite, e.g.
(Kﬁ)igﬂ, or infinite, e.g. (Kﬁ)iez,seque_nce. In the finite case these operators are Nv x Nv
matrixes which are block Toeplitz for K, and L,.

We also consider several Fourier transforms of these operators. The continuous one
noted K,(p), ¢ € [—m,x[ in both the infinite and finite cases, and the discrete one. In the
continuous case we have

K,(p) = Z Kle™9¢, i? = —1.
Jj€ln
For the discrete case, and this applies only to u = fi1,,(V,,) and p = f1,,(V,7"), the operators
K , and I_Lu are defined by the N v x v matrixes K}{, 7 € I,. We consider their length N

Discrete Fourier Transform (DFT), i.e. the sequence of N v X v matrixes K Py p € I, with

=D K

Jj€ln

the corresponding operator, noted f(;j"’”, is block diagonal, the blocks having size v x v.

We also consider the sequence of @, v X v matrixes, noted K7, j € I, pad it with
N — @, nul matrixes, and consider its length N Discrete Fourier Transform (DFT), i.e. the
sequence of N v x v matrixes noted K Jmb p € I, with

K = 3 KGR

J€lqm

o7



the corresponding operator, noted [?gm, is also block diagonal, the blocks having also size

v X V.
Note that we have

~ ~ 27p
fj:KM<T)a p€[n7

2
Kamv = Ko <%> . pel,.

All this holds mutatis mutandis if we replace K, by L.
Also note that the following relations hold

and

1

Egn(zn)<vnm,wnm) = NE'yﬂn(Zn) [Alﬁlm(é)é;ﬁ;éﬁmm} ,pel,, w<veE {O’ e

where Z, =V,, or V.. We provide a short proof
Proof. According to (109) we have, taking the length N DFT of both sides,

Lp

Hn (Zn) Ulm Whm | °

(VN WD) = B [Avnm (G)GO &
Using the inverse DFT relation,

vnm = A7 vnm
qEIn

so that
F fn (Zn)
L2 (U, W) = ZEW A (G)GE, G

qeln

By Proposition B.11 and Corollary B.12 we have

1 oo Tt o
L? (Zn)(vnm,wnm):NIE'Z7 ( )[Alp‘ (G)G,r G }

Hn VNm

which ends the proof.

D Proof of Lemmas 3.20-3.23
Proof of Lemma 3.20. We recall from (73) that

map
es(m)

p€ln

o8

(114)

(115)

ymy, (116)



The proof is based on decomposing the right hand side of this equation into four terms.
Using (61) we write,

s s(m)
v —m",, = o PNTIE | RN(G)GY / Grdve — A, (G)GY,,) / G.b,dvP| =
0 0
5(m)
U—QN—lE'yun(Vn) (Ag(é)—]\i( (é)) Gf(m)/ G;({’n)d‘/;p
0
a;l"’
s(m)
2 =Ly V) | Kpeeny (G — P =P JY7P
c ‘N E A(G) (GE Gs<m) Grm)d‘/}
0
A ) o
o PNTTEY | AP(G)GY / G;p—G_(m)> ave | +
0
[\ a;;p J/
o PNTLE [AP(G)C: G;”dVTp}, (117)
s(m>
-
so that
1 < 41 - 1,7,p|2
X = AN Z Z ||
]:1 PGIn

We prove that for any M > 0, for any m sufficiently large, we have

_1 n 1]p2
JingoﬁlogQ (sup—2| | > _48TC' <-Mj=1,--- 4

s€0 T] vl

The proofs are somewhat similar. They all rely upon the use of Proposition B.11, Corol-
lary B.12, Lemma B.14, Isserlis’ and Cramer’s Theorems. Let 0 < v < m be such that
s(™) = un,,. For the rest of the proof we define

60’2

T 48TC”

(118)

Proof for ol
From (117) we have

s(m)

(A(G) ~ AL (@) Gl [ Gl

1 1p E,yun(Vn)

29



A2(G) — AP

Step 1: An upper bound for
We recall the definition of A?(G):

e~ N 1G] du . X,(s)
O]

A2(G) =

E’Y”‘n(V”) |:6 No 2 fO

with u, = 1if p # 0 and up = 1/2, see (94). We then use the Lipschitz continuity of z — e~*
for x > 0:
e —eV[ <z —yl,

to obtain
_ - X (s) — X (s(m) X (s(m) EY ) [ x (g(m)
Ag(G) AZ(m)(G) — p(;i)(‘/n) p(S ) _ [Ln(vn;z;(s ) 1 o — Vn[) p( )} ,
Erm i Xp(s)] B (X (s0m)] Er e [ X (s)]
Up ryMn(Vn) s 2
o~ - - N02 s(m) ‘G du ~ 5 NO'QE f(m) G du
AP(G) - A, (< LA (G . (119
OO = Ty O e e
We therefore have to find a strictly positive lower bound for i [e_ ~ez Jo |G } and
show that there exists a positive constant D, independent of p and N such that
0<D<E™™ [e we Ji1Ga ] d“} <1< co. (120)

Indeed, since x — e~* is convex, Jensen’s inequality commands that

. 1\’]‘52 . ]Ev“"(V")HGp’ ]du < IE:f},ﬂn(Vn |:€ o L Iy |Gp| du] .
According to Lemma B.9

»yﬂn(vn) ~ D
E v

] = Y Rolpl = WFEHZ) <N Y |Rat,0)].

klely, tel,

Next we recall that

Ry(p,0) = Rk, O)F™,

kely

and, from,

Bs(p.0| < Y[Ry (kO] < b)Y an,

kel, kely,
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it follows from (5) and (7)

Z’Rj(p,e)‘ < ab.

Lel,

Uy s ~ 12
E ‘Gp
N02/0 { “

and (120) is proved with D = e~ % .. Going back to (119) and since u, < 1, we have

i duD . (121)

Finally

upabl’ _ abT
<

2 - o2

]dug

g

~ s ~ ~ 1
AL(G) — Ai(m(G)‘ < NDo? (/(m> ‘Gp

llp

G

b+ G| |

s(m)

Step 2: upper bound for o,
From the definition of al'* in (117) and (121), we have

(ol
4 ErOw {/S ‘Gﬁ i
s(m)

By Cauchy-Schwarz again,

Gpde

r(m)

g(m)
p p
/O G, dV

‘Oél 1 p|2 2 Efyﬂn(vn)
- N2D2 4

du> ‘G (m)

2
du] fn ()

)

A? aom ( ‘Gpm) )

1, 1p|2 2 EVﬂan)
— N2D2g4

e

2
du)

21 i | % s . =P JUP
E Rw@| [ Gdv,

(e
s(m)

+ E'Yﬂn(\/n) |:A§(m) (é) ‘éi(m)

fyﬂn (Vn) ~p

Applying once more Cauchy-Schwarz to the integral in the first factor in the right hand side

we obtain
2 s fim (Vn = 4
lalbP[2 < e 2 (s- 5m) (/ o (V){ v } du)
5("")

V) ~ s(m)
ryl‘n n 74
x [ E ‘Gs(m)

2
2

G b dvry

r(m)

+

g(m)
/ Gk, v

]E»Yﬂn(vn) A G Efyﬂn(vn) A

). (122)
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Step 3: Apply Isserlis’ Theorem
We recall Isserlis’ formula for four centered Gaussian variables X, k=1, --- .4

E[X1X2X5X,] = E[X1X5] E[X3X4] + E [ X1 X3] E [Xo X + E[X1 X4 E[X5X5] . (123)

For the first factor of the first term in the right hand side of (122) we let X; = X, = éﬁ
and X3 = Xy = X{ = X5 = G,”P. By Lemma B.9 we have

) X,1X] = ) (X5 X4] = 0,
if p # 0, and by Corollary B.8, and 0 < f <1
max {Evﬂ"(vm (X, X,] B [X3X4]} < Nab

if p =0, as well as

j:gg}c§34Ewﬂ7»(Vn) [X;Xk] < Nab

for all p € I,,, so that

/s E'Yﬂn(vn) |:‘G~2
5<m)

For the second factor of the first term we use again (123) with X; = éi(m)’ X=X =G}

S(m)?

X3 = 08<m> é;ﬁw dVP and X, = X3 = 08<m> @f<m>d‘;;_p. By Lemma B.9 again we have

4
] du < 3(ab)’N*(s — s™), Vpe I,.

]E"/ﬂn(vﬂ) [X1X4] _ ]E'yﬂn(vn) [X2X3] _ 07

if p # 0 and, by Corollary B.8, and 0 < f <1
2

)

s(m)
B 10X < Nab, B RGN <@ | v v

kel,

as well as ) )
mae {B [X,X,], B [X,X) | < Nab

if p = 0. Furthermore, for the same reasons,

. o\ 1/2
max ([E [0 X)L [E7 1%, X]) < abV/N (D0 / FVEave| |,
kely, 0
so that
y ) sm) 2 $(m) . 2
g ‘GPW /0 G lydVP| | < 3(ab)*N Y /0 FVE VP
keln
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By Lemma B.14 and 0 < f <1

g {]\ ‘G ﬂ < NC
(m) (m) NE)

$(m) 2
/ Gb, v
0

so that the second factor of the second term in the right hand side of (122) is upper bounded

s( m) ~ 2
Step 4: Wrapplng things up
Bringing all this together we find that

R 2P S A= T 3

p€Eln kel, pel,

and
2

5(m)
B A, (G | swhaar)
0

SCJZ

kely

2

)

g(m)
/ (VAP

for some positive constant A, and by Parseval’s Theorem

$(m) 2

peln kely, lel,

Next we use Corollary 3.6 to write
AV} = gdW! + obldr, 1€ I,,

from which follows that
1 2A st ’
- S Jalio? < s - stm <Z > (/ f(xg(,n>)dwj> +
pEln kel, lel,
$(m) 2
S5 ([ ) )

keln lel,

By Cauchy-Schwarz and 0 < f < 1, one has

$(m) 2 5(m)
([ sotmar) <o [ e
0 0

So that,
1 2A s
i 2 e < S ZZ(/ f<Vr<m>>dWl> +NTZ/ 91
pEln kel, lel, lel,

63



We can conclude with Lemmas A.1 and 3.13.
We provide the details. Since s — sm) < T/m,

1

Q' [ s =3 jaltop > B <
s€[0,T N41§L

2

(m)
n 1 ’ k l B
Q sup] W Z Z (/0 f(v;(m))dWT> > AT2 A +

s€lo0,T kel, el
(m)
n 1 ° 1\2 B
¢ (S“p 2 Z/o (6,)"dr 2 4T3A> ’

s€[0,7T N lel,

where B is defined in (118). The logarithm of the left hand side is less than or equal to twice
the maximum of the logarithms of the two terms in the right hand side.
For the first term, writing F := %, we have

(m) 2
1 S
s ] m 0

keln lely,

s(m)

2
1 1 FE
s s Lot S ([ shomnt) > v
s 0

keln lely,

$(m) 2
G=ew | oo ST ( / f(%’?mndwz)

kel €],
By Doob’s submartingale inequality we have

(m) 2
11 s E E
Q" | sup —— E E / V;km dW!] > Nm—= | =Q" | sup (, > exp (Nm—)
sefo.r] M 2N 0 FVitem) 2 SE[O,T]C 2

kely lel,

< exp (—ng) E [¢r] .

The application of Lemma A.1 with 2 = L yields

1 s i E N T
n k l
log € SUP} N2 § E (/0 f(‘/;'(m))dLLr> > E| < —NTRE - Zlog(l - 4E)a

keln lel,
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indicating that we can find m large enough such that

(m) 2
T 1 n ° l
nlggoﬁ log @ sup] N2m2 Z Z (/ f(Vh. )dWT> >FE| <—-M. (124)

s€[0,T

kel l€T,
For the second term, writing F := ﬁ, we have
5(m) E
Q" / (0))dr > E | <Q™ | — sup 1) > —m? |,
s€] 0 T] Nm IEXI: TE[O,T} ZGZI; T

and Lemma 3.13 shows that, given M > 0, we can find m large enough such that

S(m)
Z/ (64)2dr > E) < —M. (125)

lel,

1 n
nl_{l(;loNQ (SEOT] Nm?

The combination of (124) and (125) shows that for all M > 0, for m large enough
lim llog Q" | sup L Z ot P2 >B ) < -M
n—oo [N s€[0,77] N4 el s - - ’

where B being defined in (118).
The proof for al?? is very similar to that for a!3? which we give now.
Proof for o} 5

K (Gr-an) avr|’

Step 1: An upper bound for
From (117) we have
(Va)

- An
Oé,d,p — E

$(m)
Ro(G)Gr / (Gor Gz, ) avy
0

This commands, by Cauchy-Schwarz, that

oyt < B [R(@)ICEP] < B | RE)

By Lemma B.14 and 0 < f <1
B[R [ P(G)|GP| ] <0y 3 fVI) < NCy.
Jjeln
By Lemma B.14 again,

$(m) 2
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By Parseval’s Theorem

Cr2. 2.

pEln jEIn

2

m)

s 2
=NCy Z (/0 (f(W)—f(‘C’@QM) :

Jkeln

s(m) . ~
/ (F(VI) = F(VI,)dVP

and therefore

g(m) 2
STl < (0PN Y ( / <f<wj>—f<wim>>>de> .

pEln J,k€ln

By (29)-(30) and Cauchy-Schwarz

s(m) 2
Corn | [ 0 - s navt| <
| ns(m> s(m) 2
ANQ(.Z (/ (V) = 10 o) dW’“) > ( |- f(‘/;im))Qfdr) )

for some constant A > 0, so that we have established that
1 ) 1 stm) 4 . ?
ot <ags( 3 ([ 0= swant]
pely, jkel, \V0
$(m) ‘ ’ 2
>, </ (F(V2) = F(V))Or d?“) )
0

Jk€ln

By Cauchy-Schwarz on the second integral

1 1 R ~ i
LY o < Am< 2 ( | w- f<v;im>>>de) +

(£ o) (5 )
So that

n 1,3,p|2 > B
(z;;pﬂ P2l )
1 stm) . . ?
Q" | sup e Z (/o (f(WJ)—f(Kim>))der> >E |+

s€[0,T] G kEln

( (Z/ Vﬁ@))zch“) % (Z/O (0%)? dr) > E) (126)



where £ = B/(2A).

Step 2: Upper bounding the second term in the right hand side of (126)

Let h(m) : N* — R™ be such that lim,, ,., h(m) = 0. h is specified later. The second term
in the right hand side is dealt with as follows

n k _
Q NZ/ drx—Z/ 05 dr > B | =
jeln kel,
5 S5
Q" (Lsy>h(m)S152 + Ls,<h(m)S192 > E) <

Q" (Lsyshim)S152 > E/2) + Q" (Ls, <hm)S1S2 > E/2) <

@"(Sl>h<m)>+c2"( _Q}f ))

The term Q" <SQ > %) can be dealt with Lemma 3.13 since lim,, ., 2(m) = 0. Consider
next the term Sy = 5> ., IS f(V7,.)))%dr. By the Lipschitz continuity of f,
(29), Cauchy-Schwarz, and r — r™ < T'/m we have

o2 /T ( ) ] r ‘ 2
)Vdr=2 Wl —w’., +/ 9§ds) dr
N Z/ ( ) N Z 0 r(m) (m)

j€l, jeIn,
<QLZ/T(WJ'—WJ< dr+—Z/ </ 9]ds)2dr
N jel, 70 ' jeln (m)
202 T , N 202 " »
<N Z/ (Wi = W2,,)" dr+ == Z/ ((r - r“’“)/ wz)%zs) dr
N jel, /0 N jel, 70 r(m)
202 /T A N 20273 1 )
< — (W —=w?,.))" dr+ — sup (67)
N Jgf; 0 o m? Nse[OT]jg
We conclude that
1 T 2
Q" (51> h(m)) <Q" (N Z/o (Wi =W/,,)" dr > h(m)/(402)>
jeIn

+Q" (% S sup (#)° > 405T3m2h(m)> :

il s€[0,T7]

The second term in the right hand side of the previous inequality is dealt with Lemma 3.13,
provided that lim,, ;. m*h(m) = cc.
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Regarding the first term, decomposing the integral, we have

v+1)77m ' 9
N Z / W) Z / = W,,) dr

jGI ]GI v=0

where (W?7");, are independent Brownian motions.

m 1 1 2
/0 (WZ’”)er:/O (Wf;:n)Qnmdr:/O (\/%W%) (N )dr.

We set /V[Z?’“ = \/%W,ann Thanks to the scaling property of the Brownian motion, (W/?);,

T
are independent Brownian motions, so that

We deduce

< Z/ Wi,)? dr > him )/(4&))
— Q" (ﬁ Z mz_ /01 (Wgw)zdr > mh(m)ﬁ) .

j€I, v=0

This forces us to choose h in such a way that lim,, ,., mh(m) = oo, e.g. h(m) = 1/\/m.
Note that this implies that lim,, .., m?h(m) = co. In order to apply Cramer’s Theorem, we

require that the random variable fol <Wﬂ”> dr has exponential moments. This existence is

due to the fact that, through Jensen’s Inequality,
I ! 1,
Elexp(~ [ (Wy)ds)| <E exp | —(W5)* |ds
4 /o 0 4
' 1 2 1 2
= [ E|exp| (W) <E|exp|(-(W)
0 4 4

Step 3: Upper bounding the first term in the right hand side of (126)
In order to deal with the first term in the right hand side of (126) we have to control the
term + supycpo.7 > jen, (f(VY) — f(\/sj(m)))2 In order to do this, we define the set

< 00.

Kﬂ,n:{v:% sup Z(f(‘/s) f(‘/sj(m)))2 ,;7;} CTN

s€[0,T1] jel,

The following Lemma, whose proof is left to the reader, indicates that, for s large enough,
the probability of this event is exponentially small for large n.
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Lemma D.1. For all M > 0, for k > 0 large enough,
— 1 n
Jlim —log @ (Kppn) < —M. (127)
Using this Lemma we write

m)

s , 2
m%logQ” sup LQ > (/0 (f(W)—f(‘/;im))de) >E| <

n—oo SE[O,T] j,kejn
lim ! log Q" (Kn)
B PP )

o(m) 2
T - log @ ( 7,14 sup 2 3 ( / <f<vz>—f<v<m)>>dwk> .5 }S

n—00 s€[0,T]

(m) 2
1 - 1 s | |
lim N 1OgQ Kn,n A sSup m § (/0 (f(‘/;]) - f(‘/;‘](m)))dwrk> > E }7

n—0o0 s€[0,T7]

where £ is large enough so that (127) holds. Note that

$(m) 2
p 5 > ( /0 (f(W)—f(Vim))de) > F =

(m) 2

° /2m h(m)mNE

dwk | > 2=

SEEPT] 2N (/ IiT W"))) ) = T )

where h : N — R" is monotonically decreasing toward 0. Now let (s be the submartingale

(m) 2
B B 2m &
e |Gy X ( | - 1w ) SENGEY

Through Doob’s submartingale inequality,

@ (keand s 5 S ( / SW(f(W)—f(v(m)))dwk)g > £y )

s€[0,T] jkeln

<E® [¢rN KL, ] exp (—h(mi—?;NE> . (130)
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Choosing, e.g. h(m) = 1//m we can apply Lemma A.1 with £? = h(m) and obtain E?" [¢(zN
K,i}n} < (1-4%L)" N4, Hence, upon taking m — oo, we find that

(m) 2
=— 1 n . 1 s ,
lim N log Q" | KL, N q sup N2 Z (/0 (f(VY) - f(V(m)))de> > F <

n—00
s€[0,T] kel

— M.

We have established that for m large enough

n@%log@"(sup Z‘al?’p‘ >B>

p€ln

where B is defined in (118).

Proof for al*?

We next consider a}*? in (117). As in the previous derivations, by Corollary 3.6, Cauchy-
Schwarz inequality and Parseval’s theorem, we write

Xt < (X0 ([ sant) o 3 (

peln J,k€ln Jk€ln

S S

f(V: )ekdr> ) (131)

s(m) g(m)
for some constant A > 0, independent of n, m. In the remaining of this Appendix we
neglect for simplicity the drift part, i.e. the second term in the right hand side of the
previous equation, since this can be dealt with similarly to the above by the use of Lemma
3.13 or 3.14.

From (131), neglecting the drift term, and letting E := B/A, we write

S

1
~log Q" | sup A— ! de =b)=
N <SE[OT] N? kZEIn sm) ( )
1 1 ’ 2
~ log Q" | sup — fWHAWs| 2 B | =
N (se[o,ﬂ N? kzel s "
1
tose (ap ap Ly / ozt] = e
N 0<u<m—1 s€[unm,(u+1) Um] j,kel,
1 S
~log[m sup Q" sup N2 Z de =E)) =
N 0<u<m—1 se[unm7(u+1)77m] j,k€ly

1 Nh(m)E
—log[m sup Q" sup (s = exp (ﬂ) ’
N 0<u<m—1 SE[unm,(u+1)mm] 2
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where
FV7)awy
s(m)

h(m)
(s = exp (W Z

J,k€ln

)

The function h : N — R is increasing and is defined just below. Since (; is a submartingale
for s € [unm,, (u+ 1)n,], by Doob’s submartingale inequality,

SE[unm,(u+1)nm)] 2

We apply Lemma A.1 with € = y/h(m), T = 5, and conclude that, if h(m) < 7 for m
large enough, e.g. h(m) = /m,
E@"

[ty ] < (1= dh(m)ny,) ",

2
zt%)s

logm  h(m)E
N 2

and therefore

1 . 1
Nlog@ (sup Am Z

s€[0,7T jkeln

VAW

s(m)

1
~ loa(1 — 4h(m)n,).
We have established that for all M > 0, for m large enough

Tin 1 n 1 1,4,p|2
lim —log Q"( sup WZM’ ?|* > B)) < —M,

N—oo
s€[0,T7] pel,

and hence proved the Lemma. O

Proof of Lemma 3.21. The salient point in the proof is the use of the difference of the
correlation functions Kj,(v,) and Kg:':(vn), defined in Appendix C.2, over the sets I,, x I,
and I, x I,,. We remind the reader that ¢, is defined at the start of Section 3.2. The proof
shows that it is possible to choose m and ¢, as functions of n as stated in the Lemma.
Assume that s =ovn,,, v=0,--- ,m — 1.

Step 1: Finding an upper bound of afmm in terms of Kﬂn(Vn) — KZ:L(Vn)
In detail (73) implies that

2

5 ~ ~ ~
2 _ ms
avnm - N20-4 Z ‘((LZn(Vn) o L/%n(]‘j/n)> (Svp> (Unm)
p€ln

5 v
Nogt 2

D (28 iy 0 wm) = EE 8 (0w ) 5V
pEln

2

w=0
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Next, by Cauchy-Schwarz on the w index

5 - -
O < w2t D2 D | D 0 W) = L2 (0, win) | X ‘Wi’

p€l, w=0 w=1

5 L , e
< N2gd Z Z LG(vn)(vﬂm,wﬁm) LZn(ﬁ’/ )(vnm,wnm)‘ X Z Z ‘5‘/5

pel, w=0 pel, w=1

By (108), for all s, u € [0,t] and for all ¢ € [0, T], we have

~ = -1 = —1
L7 (su) = L8 (s,u) = o (Id Y2 KZZ’(%) (5,u) — o (Id +oRY (Vn)) (s, u).

Hn H‘TL(VTL
By the identity A~ — B~!' = A"Y(B — A)B™!

2 2 Frgmp | o2 —27-p !

o <Id +o Kﬂf{\@)) (s,u) — (Id +o K e )> (s,u) =

- -1 - -1
(o Krd)) o (KD — Kidy) o (10 407K, ) (5,0,
where o indicates the composition of the operators. By Remark C.5 in Appendix C we have
n( u) — Lqmpn)(s,u):
-1 . . - —1

/ / (14 02Kt ) () (B2 ) — K22 ) (o) (104072 ) (9, ) dedy,

for all s, u € [0,¢] and for all t € [0,T].
We recall further that?

-1

(Id+ 0_2Kg”:(€ )> (s,x) <1,
-1

and (Id+a—2K5 . )> (s,2) <1, (133)

we conclude that

Ulm 'U7]m - ~
2, 0 0m) = Efes om | < [ [N (B2 ) - i) (@] e,

and, by Cauchy-Schwarz, and v < m,

~ 2
e [ (B - i) G

3This comes from the fact that, say for an n x n matrix A4, but this is also true for general linear operators,

zgn(vn)<m7m> W) — Lzm(zx;/ )(Unm, W) dz dy,

| A =max |A;;| < ||A|ly = Omaz(A) the largest singular value of A
0

max
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so that, by (132),

- 2 v _ 2
< [ (B - Re) @ a3 Jove

pel, pel, w=1

Y

and, by Parseval’s theorem,
5T2 k 2 h 2
0, < / [ (Rt = ) ) ot < 35 oV
kel, w=1

Step 2: Choose m and ¢,, as functions of n
We observe that Kg’:(’f/n) is equal to K En(vn) over the set I, and to 0 over the complement
of I,, in I, their common value being

Kk

Kl Z Ry (k,h)— Zf FVE,

hel, le[n
so that we have
2 v
gnm_E’T 3 / / (ZRjkh ST v”h)) dudy x Y 3 |ovE
kel \Iy,, hel lel, kel, w=1
Because 0 < f < 1 we have
2
2 5T4 k k12
0, < > <Z|RJ (k,h)| ) XYY oV
k€I\Ig, \hel, kel, w=1

Define

Y(n, gm) = Y (Zmy(k,hﬂ).

k€I \Igy, \hEI,

By choosing g,,, as a function of m, and m as a function of n, ¥)(n, ¢,,) can be made arbitrarily
small for large n and m . We have

afmm < —¢ N, qm, Z Z ’5\/’C

kel,, w=1

As before, we neglect the contribution of the drift term in (29) and write that, for m, n large

enough \
5T -
Oé12}77m < ?w(n, qm) E E ‘6W£}2 .

kel, w=1
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Let us define

[T
5W£ = _gw,k’ k€ Ina w = 17 e, M, (134)
m
where the £*s are i.i.d. N(0,1). Using (134), we have
2 ° 1 - )
N w,
S (S (1, Gm) Nom k; wz::l '3

Define ¢(n,m) := 5T°N(n, q,,)/c* and assume that we have chosen (n,¢q,,) such that
limy, ;00 (1, m) = 0.

Remark D.2. Because of (6) we have

n

1 1
) < Ab? — <AV (n — qp) ————
(1, gm) < >, 1 S AV =g )(qm+1)4,
k=qm+1
for some A > 0 independent of n and m, and therefore
1
o(n,m) < B(2n+1)(n — Qm)m

with B = Ab*T®. Now choose g, = ng(m) with g(m) < 1. It follows that
1 1 1 1

(2n+1)(n—qm)m n(2+ )(1—g(m))m.

At this step, any choice of g <1 yields to lim,, ;0 p(n,m) = 0.

Step 3: Apply Cramer’s Theorem and conclude
Next we set A := 375 and have

O o> g -0 [ D3t )

kel, w=1
Since limy, ;00 (1, m) = 0 we can choose ny and mo such that ( > 1 for n > ng and
m > myg, 1 being the mean of (£¥*)2. Let p := en mo) We have
PN e el ECH E D PR
Nm kel, w=1 n,m) J = Nm kel, w=1 a ’

as soon as n > ng and m > mgy. We conclude thanks to Cramer’s Theorem. We state in the
following Lemma a version adapted to our setting.
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Lemma D.3. Let €% w =0,--- ,m —1, k € I,, be a sequence of i.i.d. N(0,1) random
variables under Q", and p > 1. There exists o > 0 depending on p such that

m—1
w1 1 k2
- n| _~ w, > < _
6 (0 2320 <
kel, w=0
Proof. See [8, Th. 2.2.3]. O
According to this Lemma there exists a(p) > 0 such that
— log Q" Z Z Wik A < —ma(p).

Combining this with (135) we obtain

1 €
N loe@ (Si}é%] Yot = 3TC’<72> < —malp),

as soon as n > ng and m > myg. This completes the proof. O

Proof of Lemma 3.22. The proof is based on a comparison of the length N DFTs of a
sequence of length N and of the same sequence of length @), padded with N — @, zeroes
followed by the use of Cramer’s Theorem, i.e. Lemma D.3.
Step 1: Fourier analysis
We have, with s = vn,,,

0 = g D0 |7 E g 97 ) — B

2

peln
By equations (108) and (114)
(Lin(vm)éf/'m’p)(vnm) = o? ZMZT’" — Z(l + (7_2Kp (vm)) LN, Wy ) SVP
w=0 w=0

v

- rm — Vlm 27Tp — m
=2 VI =S (1 oK (S N ) (i Wi )OV
=0

w=0

By (37) and (109) we have

i _ mk m,k+j
07 =0 ’ Z ZLG(vm(me??m)(Ww £,
kely,, w=0
Taking the length N DFT of both sides and using Lemma B.1 we obtain for p € [,
am — k myk % m,
0r = o2 Z FNPZ LG(vg")(mm’ Wim )0V,
w=0

ke[‘hn

5



27

where Fiy = e~ . The relation

mvk m k
Lfln(v,{n)(vnm7wnm) = Q Z Lq 1 m)(vnm7wnm>Fém7

m
q€lq,,

2im
where Fy,, = e@m | implies

emp — 0'72Q Z kaqu Z LZ:’”(?/"L vnm? w/]’]m)év’[}n’p

k,q€lq,,

According to (107),

= = omg\\
am,q _ 2 —2 qm,q -1 _ 2 —2 qm
Lra, =o (Id —(Id + o2 K0,) ) _ (Id - (Id—l—a K <@)) ) ,

so that we have, using qu = @0k, where 0, = 1 if k = 0 and 0 otherwise. And

kp ok
therefore }-, o, Fy'Fg! = Qm,

ém,p —

-1
Z(gvmp Z Z Z —ik(G =) (Id+a‘2KZm(Vm) (%)) (U’r]m>wnm)m5vmp

w=0 kEIqm qelqm

We conclude that

L0V om) = B =

fn (V)

-1
z(z > (10 i (57)) -

w=0 \ k€l,,, qEIqm m

—2 TrGm 27Tp - Crm
(Id +o QKgn(V#) (T)) (vnm,wnm)>5Vw P,

With a slight abuse of notation and ignoring the time dependency for the moment we write

2 -t 1
<Id + J_2KZ:(V7”) ( Wq)) (Unma U”?m) - = )
Qm L+ o 2K0" oy (2”—‘1)

Qm
and B 2mp\ \ ! 1
(100 Rtz (57)) o) = R (32)
Because
! _ /” 3y — ) do.
L4072 K5 v (%) Jml+o Qqu(VM ()
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and

we have

27 1

P s -
: )(27"1) On 14 02K ()

27T —2 I 9m
kel,, eel,, 1 +o KAn v

fn( Qm N
DIy SRR Ly N CES
90 frg
ke[‘lm qe[‘hn 1 + O-_Qqu(Vm) (271_(1) Qm - 1 + U_QKS/T:(V#) <80)
727rikim - ik
D D e N I = )
Ko T L+ 02K (20) @m 2T 1 0 2K ()
. 1 ™ e~ tke
Z eQﬂ"Lkﬁ,z_/ dgp
kEZ—Ig,, T)rxl+o 2qu(an) (¥)
Define .
ik 9
Vo € [-m, 7], h(p):= ‘ and Ap = T
1+ 0_2qu(\/m) ) O’
and write
1 e*ZM’kQLm o 1 2qm A
o q 2 Q_:%Zh(_w+7¢+9A9@)-
4€lg 1+ 02K i vm) < q) m poars

This shows that the first term in the left hand side of the previous equations is the Riemann
sum, corresponding to the midpoint rule, approximating f_ﬂﬂ h(¢) dp. This implies that

1 —2mik =L 2 1 Q —ikep
sy —C R v LS
27 L+ 02 K5 <27rq> On 21 )r 1t o2k m (#) U

qEIqm Hn (Vn

where D is a positive constant that depends on the maximum value of the magnitude of the
second order derivative of h over the interval [—m, 7], hence bounded. Therefore we have

proved that

—QWikLm s —ik(p
Z 2mik % QL Z € Q_W_Qi do || <
k€l @ q€lgm 1+ U_ngm(Vm) ( > Qm TJx1+ O_szm(Vm) (90)
D
—, Vpel,.
Qm

7



1 —ikp

We now consider the term — f B e

dep. Tt is the kth coefficient in the Fourier

2T 1o T2 Ry ()
series of the periodic function ¢ — L . Since 1 + o 2K dm is positive
p 90 1+072qu(vm)(§0) + (V ) (90) p )

three times differentiable with a bounded third order derivative, see Lemma C.3, a standard
result in Fourier analysis indicates that this coefficient is o(1/[k[*). Since D he k] a5 is of
order O(1/k?), we conclude that for Q,, large enough

. s —iky
. @mksi/ - dp| < 22,
keZ—1I,,, 2 Jor 14 U_ZKq:?(vm) (¢) Q

for some constant D > 0.
Reintroducing the time dependency, and by Cauchy-Schwarz on the w index, we have
therefore proved that for @), large enough

Z(Z Y G (Id+a‘2qu (gj))l(vnm,w%);—ﬂ—

w=0 \ k€ly,, qelqm m

2rp\\ -
(Id + Uﬁ?qu(Vm) (%)) (UT}WU wnm)> 5‘/;17)”710

1 k(2 272 2 Fam 2mq - 2m
S e ME ) (100 hy (50) ) -

kelq,, q€lg,, "
2mp\\ N\ - v
<Id+o‘2sz(vm) (W)) (vnm,wﬁm)> x (Zlé‘/&”’pIQ) <
w=0
1/2
Zlévm’pﬁ) ,
Qm (w 0

<

(s

w=0

for some constant D > 0, and therefore that

2

S I

pel, w=0

e = 73 2|7 Vo) 05 <

so that, by Parseval’s theorem

m]m < 5D2 ZZlévka

m kel, w=0

Step 2: Apply Cramer’s Theorem and conclude
As in previous proofs, Lemma 3.14 allows us to neglect the contribution of the drift terms 6™
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in the above so that we are interested in upper boundlng the probability that the quantity

]\%32 D ker, Do [OWE? = ]\?;C;T > ker, Domo (€7 k) is larger than 575-. Following the
same strategy as in the end of the proof of Lemma 3.21, we choose myq such that p :

150%’% > 1. Applying again Lemma D.3 shows that there exists a(p) > 0 such that
0B Q"(sup o) > =5 0) < —ma(p)
—lo SUp Qum) = 5~ o) S —malp),
N OB T Y = 37002 P
as soon as m > myg. This completes the proof. O

Proof of Lemma 3.23.

The proof uses the idea of writing an upper bound of O‘vn as a sum of three terms and upper
bounding each of the three terms. We only provide the proof for one of the three terms, the
one requiring the more work.

Step 1: An upper bound for 044

We go back to the initial definition of Lq’"’p ) and LZm(’I"/m), see (116), to write the expression
for o, in (73) as

2

Oévnm N2<74 Z ‘((LZT:&]\D/TL - Lqm?}\o/m)) 5Vp> (V7m)

5
NigT 2

pEln

2

VNm UNm )

o ~ vim ~ g e i ~ ¥
Ein () [Aﬁn (Gc m)Gc m,—p / Giﬂﬂp Av?r — Agn (Gm)Gm p/ G:};s dVrp}
0 0

(136)

where G“™? is the length N DFT obtained by padding with N — Q,, zeros the length Q,,
stationary periodic sequence

Gy =gk f(VE), e, (137)

keln

and G™? is the length N DFT obtained by padding with N — Q,, zeros the length Q,,
stationary periodic sequence

=Y BN, e, (138)

kel,

The coefficients (J7%)jer,,. ker, are defined in (32) and (33). In order to proceed, we upper
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bound the right hand side of (136) by a sum of three terms

2
15 in (Vi) | [~ ~ - ~ ~ vl N
4 yhntin P c,m P m ¢,m,—p CMp Y7
@y < oz O (B | (A, (G = A, (G)) G Gemravy|| +
pEIn\ ~ 0 ,
it
2
i E DR Y (ém) Grem—p _ (ym,—p o Gemr qyr || 4
N40—4 VTIm UVNm UVlm r(m) T
pEIn\ ~ 0
15 ]Erylln(vn) ]&p ém ém —p vim éc,m,p é’m,p v, D ?
Nig4 Z vnm( ) UNm rim) M p(m) d‘/; )
pEIn\ 9r /
O

and show that for any M > 0, all m € N, there exists a constant ¢ > 0 such that for all
e <exp(—cT)0?/T,all0 <u<mandall 0 <v<u

— 1 15 .
T}LHC}ONIOg Q" <N4a4 Z oI > 3;502 exp (vn,e) and (e, ¢) > unm) <-Mj=1,2,3.

pEln

The proofs are somewhat similar. We provide a proof for the most complicated term corre-
sponding to j = 1 and leave it to the reader to provide proofs for the cases j = 2, 3.

Step 2: Upper bounding /N\’U’nm(éc’m) - ]\zv)nm(ém)‘
We first recall the definitions of f\gnm (G&™) and Aﬁnm(ém):

up  ronm | Acm,p|?
AP (Ge™) P = L (S I
= Jo, 2
) e [ RG]
and ,
Up vn ~Am,p
Ap  (Fm o~z Jo |G| ds
AL, (G™) =

Fvin (V) [e‘ L, 0“"’”\@2"*?\2115} ’
with u, = 1if p # 0 and up = 1/2, see (94). First note

2
ds

_up vnm|éc,m,p
~ [ No2 Jo s

Re (Gom)— Rr, (GM) =
) B O = e T

2 w ~c
_up vNm c,m
ds e woZ Jo |GS

Vlm Vlm

+ A (@™

UNm

. . ~ 2 _ . ~ 2
) [t O8] i [t s ]

Up vnm

Efyﬁn(vn) [e*m 0

ég’m’p|2 ds:|
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Now, as in the proof of Lemma 3.20, we use the Lipschitz continuity of x — e™* for x > 0:
e — eV < |z —yl,
to obtain

2

S
G

~ up

B 2
Ovnm ()Gg,m,p ) dS

AL, (Gom) = Az, (Gm) < 2
o ( ) i )| < No? [yin (Vi) [ Sy [ |G| ds]

6_ No2 J0

) ) u E'yﬂn(vn) |: ()W]m (‘G?m’p i - ’é?’p 2) ds :|
+A€’7m(Gm>Ncpr? [y (Vi) [e—;—; 0“"m|é§-’”’\2ds} '
Because u, = 1 or 1/2 and
0<D<E™™ [e—% 0" GT’plzdS] <1< o0

for some constant D independent of p, m and N (see the proof of Lemma 3.20). So, we have

2) s
/0 o (’Gmp 2) ds } ) (139)

Given two complex numbers x and y with complex conjugates * and y*, it is clear that

AL, (Gom) = Az, (Gm) <
Gl - |

~m,p
G,

+

/o

A (GME™ {

2 ~
e

UVTIm

z)? = 97| = [(z — y)z* + y(z" —y*)| < |z —y| (|z*] + y]) = [z — y| (|=| + |y]),

and therefore, by Cauchy-Schwarz,
Vlm 2
o )
0

5 1/2
ds) X

2 ~
+ |G

~ 2 ~
anm,pl m,p
G G

UVNm - -
< ( / Geme — G
0
vnm
AN
0

~ye,m,p
Gy

2) ds) " o)
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Combining (139) and (140) we obtain

2
<

E’yﬂn(vn) ]\p éc’m . Ap ém éc’m»*p UTim éc,m,p d‘?p
UNm ( ) VTm ( ) 0 r(m "

VN,
4 fn (Vi)
N2D2g4 <E7

9 1/2
> ds) X

2 ~
+ |G

UNm - 2 1/2 VNim -
( / Gemr — G ds) x ( / ()Gg»m»f’
0 0

2
~ UNm 5
\Gi’é’“p / Gonl dvP ) +
4 i (Vin UNm 5 2 1/2 Vil . 5 )
N2D2gh (Ew (Vn) [(/ Gomr — Gmp ds) « (/ ( Geme|” 4 ‘G;"’p
0 0

) )
)y

UNm

(Eryﬁn(vn) [Agnm (ém) ‘éc,m,p

Vm 5
&mp 1P
/0 Gr(m W

Three applications of Cauchy-Schwarz dictate

bl < & gy [/ | Geme ol ds] g
VNm — N2D20-4 0 s s
<E,yﬂn(vn) /m]m ( é«c,m,p 2 + ‘éjm,p 2) ds ’éc,m,p 2 '/m]m éc,m,p df/p : +
s s Vlm, r(m) r
0 0

i) | [ A 2 | ama| fn(Vn) | § ™) |G i

oo [ (o e ) o e o]

0

UNm 2
An(Vn) A ~m ~ec,m, v
E A3, (G™) /0 Gy AV )
E fn(Vn vitm = = 2
< —E (Vn) [/ ‘Gz,m,p —Gmp ds} (A + Ay),
N 0
4
with £ := Doy and
o P (V) i ~e,m,p 2 ~m,p 2 yin(Vn) | 3 p Ym | Fye,m,p ?
A =E Go™Pl 4+ |GTP| ) ds| x E A%, (G™) \Go
0
gy e (Gm o G VP i
X vnm< ) o r(m) T
v | (] A 2| A ~ 21 [ A |
Ay i=E""" / ( Gomr| 4 ‘G;"’p ) ds \Gi’;ﬁ;” / Gy dvy
0 0
U i (Vi) ~ 2 ~ 2 ~ 2 v .
= / EY <‘ Gom™P| 4 ‘GZ"” ) )Gfﬁm / GondvEl | ds.
0 0
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Step 3: Upper bounding A;
Using equations (137), (138) and Corollary B.8 we have

i) | [ (| Aemp]?
0

By Lemma B.14 we have

~m,p

2
) ds} < 2abT' N.

g [Agnm(ém) Gom 1 < CgN,
and
B AR (G /0 v Gemr df/p <Cr > / F(Vim) de )
kel,
so that

Al < 2@5(0:7 2TN2

kel,

(141)

/ vy ave|

Step 4: Upper bounding A, by Isserlis” Theorem
Upperbounding the second term, As, requires the use of Isserlis’” Theorem. In order to do
this, we recall Isserlis’ formula for six centered Gaussian random variables (Xj)g=1,.. . For

simplicity we write E7 for EY

E? [X) X5 X3 X0 X5 X] = 482153” XoXo@] B [Xow) Xow] BY [Xo@ Xow],  (142)

oeS6

where S°® denotes the set of permutations of {1,2,---,6}. Now if X;.; = X}, k = 1,3,5,
this reads

EY [1X1 21X 17X 7] = B [|X0) BY [| X2 BY [|X50%] + B [|X1 7] [BY [X3.G)° +
E [|X1%] |BY [X3X2])° + E7 [| X5 [BY (X1 X5)° + B (X1 XG) B (X7 X6 EY (X3 X2 +
EY (X1 X3) EY [X; X2 EY (X5 X5]+EY [|X52] |BY (X1 X3P +E [X1X3) EY (X7 X5 EY [X3X2] +
E" [X, X3 EY [XTXG] EY [ X3 X5+ EY [ X, X5] EY [X7X3] E7 [ X3 X5]+EY (X, X5 EY [ X7 X EY [ X3X5] +

EY [\Xg,\ } |E7 [X1X5H2+]EV [Xng] EY [XfXg] E” [X§X5]+]E'Y [Xng‘] EY [XfX;j E” [X3X5] +

EY [|X5%] |EY (X, X2]))° . (143)
We let

= CN}’C’m’p or X;= G;”’p,

c,m,p
= G,

UNm

VNm 5
JR— C7m7p
X5 = / Gemp Ay,
0
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Note that we have
Xo=X; =G or X;=Gm7,
X4 _ X* _ Gcm p

VNm

vnm ~

—_ * c,m,—p Y4

Xp = Xi = / GemsP v,
0

Thanks to these identifications and using Corollary B.8 we have

2
E7 [|X1]?] < abN, B [|X5*] < abN, B [|X5*] <ab

keln

/ FVE ) dV?

All fifteen terms in the right hand side of (143) are upper-bounded by

/ FV de
/ F(VE) iy

using the stopping time 7 (e, ¢)

d5‘| / f (m) de
kel

for some positive constant D independent of n and m. By Corollary B.8 and the Lipschitz
continuity of f

~An(Va) {/Unm ‘ em.p m,p
E G G
0

Y

/ F(Vh) vy

> 1/2

max  |E [X,X;]| < abV'N (

i=1,2,3,4,j=5,6

kel,

max, IE” [X;X;]| < abN.

i=1,2,j=

(ab) N2
kel,

)

so that
2

Ay < 15(ab)>TN? Z
kel,

Step 5 Express the upper bound on aﬁ;}f

Using (141), and returning to the notation Ey

41 i) | [T A =2
av7 Ny < DE’Y Gczmzp _ Gm7p
Tm — 0 S s

ds} < ab/ ST (F(VE) = F(vrE))* ds

kel

<a / Z mG d,

kel,
so that we have

15
EDMEHESY I S AO D S M} |

pel™ kel kel, pely,

2
<m)) dvy?
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for some positive constant D. By Parseval’s theorem on the p index

15 sip_ D [T 1 mk; ! ’
Nig4 Yonm < m 0 Z V ds X Z Z f ,r.(m) dV; .

pElyn kEI kely lel,

We next use the relation
dV! = adW! + o' dr

to write
15 4,1 P < v 1 m, k l ?
v et 2 [ LS @ asx S ([ s an!
peln keln kel, lel,
UNm 1 2
Ly v dstZ(/ (m)w,edr) |
ke[n kel, lel,

where we have included the constant o2 into D.
Since, if 7(€, ¢) > un,,, by (76) we have

— Z mG < eexp(sc)

kEIn

for all s < um,,, we conclude that

n—oo [N N4g4 Ym— 3T (Co?

p€Eln

1 15
lim — log Q" ( ablr > & exp (vnme) and 7(e,¢) > unm>

is upperbounded by twice the larger of the two terms

1 A o5 cexp (Vnmc)
JLH;ON IOgQ < / ¢ ds % Z Z ( 7"<m)> dW. ) Z W (144)

kel €T,
1 (D [ . 2 cexp (Unme)
Jl_?éloﬁbg@ (m/o e’ ds x kezl ZGZI (/ f(v r<m) ) > —eTcor |- (145)

Step 6: conclude by the use of Lemmas A.1 and 3.13
Since exp(vnm¢) — 1 < exp (vn,¢), we can upper bound (144) by

1 2 N
JL%ﬁlogQ”(/cZZ(/ (Vi )ZW>

kel, lely,

By the exponential Tchebycheff inequality

(UCZZ(/ FVh dWl)Qz%) <

P (1/c Yy (/ FVh. dW£>2>] .

Nc¢ n
- | E“
“p(1ﬂvpﬁ>
kel lel,
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In order to apply Lemma A.1 to the above expectation we require

1L _ Vm

— <

Ve 2T

for v =0, -+ ,u and this is certainly satisfied if

1 1

Ve VT

Lemma A.1 then commands that

2 fes (Lo ([ svamt) )] < (1-42) ™
P 5N 0 r(m) " - me ’
kel lel,
and hence
. 1/c viIm 2 T\ N4
Q il k l A
2 fon (WS ([ rran) )| < (1-42)

kel l€l,
Therefore we have

1 (1) T ? Ne
+logQ (WZZ(/O f<V/fm>>dWi> zm> <

kel lely,
1

1 T
e Tlog (14 ).
“12TCDo? ~ 1 Og( c)

We conclude that for ¢ large enough, for all positive Ms and for all v = 0,--- | u (144) is less
than —M.
Along similar lines, we can upperbound (145) by

— 1 ! e\ 2
nll_{{)loﬁlogQ (m Z Z (/o S (Vi )0, dr> 2> 6TCDo2 |
kel I€l,
and, by Cauchy-Schwarz, by
— 1 n 1 vt b2 1 vim 2 2
Jlim < log Q ((Nk;/o (f(Vim)) d’f’) X (ﬁl;/o (6:) dT) =z W)'

Since 0 < f <1 and 0 < wvnm,, < T, this is also upperbounded by

— 1 1 T2 ¢ — 1 1 2
lim —log Q" [ — ) dr> —— | < Tm —1log Q" [ ~ [ . —
v s @ (NZ/O (®:) T_6T2CDU2> < iyl @ (N,i}é%]lez](’“) = 67°CDo?

lel,

and Lemma 3.13 allows us to conclude. O
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E Proof of Lemma 3.24

We give the proof of Lemma 3.24.

Proof of Lemma 3.24.

Equation (14) resembles a Volterra equation of the second kind. As previously, we ignore
for the sake of simplicity the upper time index in L, and K,.

Step 1: Construction of the sequence of processes (‘I)i’n)iez,nelN*

We proceed as in the case of the deterministic Volterra equations by constructing the fol-
lowing sequence of processes

Viez, Vi¥=oW]
t s
V! :JWtJ+0_1/ (Z/ L (s, u) qujH’O) ds
0 0

1EZ
- t S . . .
:awg+/ Z/ Ll (s,u)dWi™ | ds,
0 1EZL 0

where the infinite sum is the L? limit of the finite sums. The existence of this limit is
guaranteed by Proposition C.8. We then compute the following difference

Vit —y0 :/ Z/ Li(s,u)dWiH | ds =] (146)
0 \iez /0
Using (146) we write formally
t s
V7 = oW/ +cr_1/ Z/ L (s,u) dV,; " ds
0 ez /0
t s
=V —1—01/ Z/ Li (s, u)dip 7 ds. (147)
0 ez VO

Again, the convergence of the infinite sum is obtained by the study of the sequence of
variances of Gaussian processes. Applying the Young’s convolution theorem [2, Theorem
4.15], thanks to Proposition C.8, we deduce

sup Z (Z LZ(S,U)LL‘%U,U)) < 00.

OsvsusssT ez \iez

We deduce easily the existence of the limit in (147). We write now

t s
=17 =V = [ 3 [ L as

1€Z
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and hence

dw _ 71 Z/ Lz ¢Z+]1 ds.

‘/ »1 ‘/ ;T 1 . T

where 7" is such that

i+jn—1
dw - —12/ Li(t w ds, n > 2.

1EZ
Define ,
R s
" = ,n>1.
t dt -

This sequence of processes satisfies

P = —12/ Li,(t,s) " ds, n > 2

€7,

t
and ng”“ = VPP -V =V — oW = Z / QI* ds.
k=1 k=170

Step 2: Analysis of the sequence (@{’k)jez,kem*
We now analyze the sequence (®7%);>1. First we note that

PI? = 12/ th(s(I)”Jlds

€7

with @9 = Z / Li(s,u) dWiH.

€7

Consider next ®°. We write, using (148),

(148)

(149)

(150)

oIS — —lz/ Li(t,s) @2 ds = o2 Z/ Li(t,s (/ LL(s,u)CPiL”“’ldU) ds.

€L W,IEZ

Letting ¢ = [ + 7 we have

PP = 572 Z/ Li(t,s) (/ L (s, u) @y du) ds

i1, 0ET

and note that this can be rewritten as

t t
oI = 52 Z /0 </ L (t,u) L (u, 5) du) eIl s,

IRAY/A
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by exchanging the order of integration. It follows for £ > 2 that

P = =1 Z/ Lﬁk L(t,s) It ds, (152)
LeZ
with
Lipar(t,s) = LL(t,u)Lf;]ﬁ(u, s)du p>1 (153)
lez V3
and
Ly, =1L, (154)

Step 3: Formal definition of the solution
It follows from (149) and (152) that

t t s p—1
VP = oW +/ P! ds—l-Ul/ (/ (ZZU (k—1) LZ )) it du) ds.
0 0 0 \iez k=1

If the series > _ o~ *= 1)U w(s,u) is convergent for all i € Z, we can formally define a
solution by

V/ = oW/ + /®91d3+0_12/ </ M’su@’ﬂldu)d, (155)

V€L

where
) (k—1) 11
M, (s,u —plgrolog o L (s, (156)

is called the resolvent kernel.
This reads, because of (150),

Vi —OWJ+Z/ (/ L(s,u dW’ﬂ) ds+

| 12/ (/ M (s,u (Z/ L, (u,v dW’”“) du) ds. (157)

€7 leZ

Letting ¢ = [ + 7 we have

_aWJ+Z/ (/ L (s,u szﬂ) dot
/ (/ Ml ( / Ly (uy0) de*J‘) du) ds.
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Step 4: Proof of the convergence of (156)
We prove the convergence of the right hand side of (156). Note that (153) is a convolution
with respect to the spatial index:

t )
LLpH(t,s) :/ (Lp(t,u)*L}L,p(u,s))Z du.

Applying Young’s convolution theorem [2, Theorem 4.15], thanks to Proposition C.8, and
Cauchy-Schwarz we conclude that

Z}Llpﬂts Z|LL(t,u)‘xZ|L (u,s)| du <

lez 5 lez lez
t . 1/2 t ) 1/2
/ (Z\L;(t,un) du| / (DL;,Z,(U,SM) du| . (s8)
5 \lez 5 \lez
Applying this for p = 1 we obtain, according to (154)
t ) 1/2 t ) 1/2
DI /(Zm(t,u)y) du /(Z;Lw,s)y) du
lez s leZ s lez
1/2 1/2
/ (Z‘Ll (t,u)| ) du / (Z’Ll u, S > du =: A(t)B(s). (159)
l€Z leZ

Both A(t) and B(s) are finite by Proposition C.8. Applying (158) for p = 2 we obtain, using

(159)
<Z‘Ll‘“‘”’(t’s)‘) L (Z'Ll“‘> d“/s<Z|L s )zdu

leZ IEZ lez

§A2(t)Bz(s)/ A?(u) du. (160)

S

Applying (158) for p = 3 we obtain, using (160)

(Z‘LLA(t,s)‘) g/o (Z|L;<t,u>¢> dux/ (Z{Liﬁ(u,s)’) du

lEZ I€Z I€Z
t u
< A2(1)B(s) / A2(u) / A2(v) dv du. (161)
In general we can write
2
(Z |L,U« k+2 t S > < Az(t)B2<S)Fk<t7 8)7 k= ]-7 27 37 T (162)
leZ
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where
t

Filt,s) = / A2(u) du (163)
Fy(t,s) = / A%(u)Fy(u, s) du
Filt,s) = / A2(u) By (u, 5) du. (164)
We claim that ]
Fk(tv S) = E(Fl(tv 3))k (165>

This is true for £ = 1. By induction, assume it holds for k£ — 1, then by (164) we have

1

Fi(t,s) = | A(u)Fra(u,8)du = ——= [ A*(u) (Fi(u,9)"" du=
s (k=1 J,

L (Fy(u, 5))F 20009) ) LA ) 1' (Fi(t, )"

Next, by (163) we have

OSFI(t,s)S/OTA2( du—/ (/ Z‘Lluv> dv du < C*

lez

for some constant C' > 0 by Proposition C.8. By (162) and (165) we conclude that

Za*k“ L a(t,s)| < o™ w;}{g) A(t)B(s), (166)

which implies
N CaeL
T L (t9)] < 0 TR A0 B) (167

for all 7 € Z. and, since the series z*/v/k! is absolutely convergent for all complex z, (167)
shows that the right hand side of (156) is absolutely and uniformly convergent so that
MZ(t, s) is well-defined for all ¢ € 7, continuous and uniformly bounded w.r.t. to i, and
(166) shows that the series M (t, s) is absolutely convergent, so that we have obtained (88).
Step 5: Existence and uniqueness of the solution

We then prove that (88) is a solution to (14) and that it is unique. Indeed, (88) implies

AV = odWit +> (

keZ

C ok kit
/ Lu(u,v)dWUJrﬂ) du+

( / M (u, v ( / L5 (v, w) dWﬁ”]’) dv) du, (168)
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and (14) can be rewritten

V) =oW/ +0- Z/ (/ Ll (s, u) viﬂ') ds. (169)

i€Z

Replacing the value of dV;'*7 given by (168) in the right hand side of (169) we obtain

V/=oW/ +06Y(A+B+0)

_UZ/ (/ Li(s udW“”) ds, (170)

and, according to the definition (150) of ®7!,

B= Z/ (/ Li(s,u </OuLﬁ(u,v)de+i+j) du) ds

i,kEZ

_Z/ (/ Li(s,u) c1>2+ﬂ) ds. (171)

V€L

with

Next we find that, using again (150),

C=0"" .Z /Ot (/O Li (s, u) (/Ou M*(u,v) (/0 L7 *(v,w) deU“ﬂ') dv> du) ds

i, kJIEZ

=gt ‘Z /Ot (/0 Li(s,u) </Ou MF (u, v)@rtitit dv) du) ds.

i,kEZ
Exchanging the order of integration and applying k — k + ¢ yields

C=o0"" ‘Z /Ot (/0 (/ Li,(s,u) M*(u,v) du) Plti+il dv) ds

i,kEZ

=g ! Z /Ot (/0 (/ Li(s,u)M*(u,v) du) Pt dv) ds.

i,kEZ
Using the definition (156) of M* and rearranging terms

122/ (/ —h (Z/ Li(s uL,’j/umdu) cpjfﬂ%ldy) ds.

keZ 1=1 1€EZ

Because (153) this reads

s [ ([ e otonar)

kEZ =1



and since, because of (156),

o0

Z —(=D Lﬁ l+1(S,U)) =0 (Mk(sﬂf) - Lk(s’v>)

I=1
we end up with
C = Z/ </ M*(s,v @kﬂldv) ds—Z/ (/ L*(s,v CIDkﬂldv) ds. (172)
kel ke
Combining equations (170), (171) and (172) we find

t s t s
HA+B+0O) = Z/ (/ LL(S,U)dWiJrj) ds+o~" Z/ (/ MF(s,v)@F1 dv) ds,
= Jo \Jo = Jo \Jo

1€Z

and therefore that oW/ + o0~ 1(A+ B + C) is equal to the right hand side of (155). We have
proved that (88) is a solution to (14).

Uniqueness is obtained by noting that if two solutions V;, and V5, exist, there difference
Vi = Vi, — Vo, must satisfy the deterministic homogeneous Volterra equation of the second

type
t s
-1 Z/ / Ll (s,u)dV; ™ ds,
ez /0 JO
for which it is easily proved that the only solution is the null solution. O]

F Proof of Lemma 3.27

Lemma 3.27 follows from the following four Lemmas.

Lemma F.1. For all € > 0, there exists mo(e) in N such that for all m > my

E | sup |al!|| < Ce

s€[0,t]

for some positive constant C' independent of 7.

Lemma F.2. For all € > 0, there exists mo(e) in N such that for all m > my

E | sup ‘aff! < (Ce

s€[0,t]

for some positive constant C' independent of 7.
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Lemma F.3. For all ¢ > 0, there exists mo(e) in N such that for all m > my

E | sup ‘agﬂ{ <Ce

s€[0,¢]

for some positive constant C' independent of j.

Lemma F.4. For all € > 0, there exists my(e) in N such that for all m > my

E | sup ‘ocg’ﬂ < (e

s€[0,¢]

for some positive constant C' independent of 7.
Lemma 3.24 allows us to rewrite the a{’ks, k=1,2,3,4 as follows.

t

ot =0 | (Lylts) = Lyt s)) W +

ie[fhn
Z / LZ (t,$) LZ (tm)| 5(m) (/ Mk (s,u (/ Lﬁk(u,v)de”ﬂ) du) ds .
zchEIq

J/

J, 2
ai

(173)
Lemma F.1 then follows from the following two Lemmas.

Lemma F.5. For all e > 0, there exists mo(e) in N such that for all m > my

E | sup }a311| < Ce

s€[0,t]

for some positive constant C' independent of j.

Lemma F.6. For all € > 0, there exists mo(e) in N such that for all m > my

E < (Ce

sup }af;m |
s€[0,t]

for some positive constant C' independent of j.

Proof of Lemma F.5. The proof is based upon recognizing that

Si=>)" / (L (t,s) — Li, (t™), st™))) awits

ZEI(Im
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is a continuous martingale with quadratic variation

(s7), = %" / Li (10 50mY)2 ds,

1€lq,,

because of the independence of the Brownian motions.

So that we have A ‘
sup |a§’1’1{ = sup ‘S§| .
s€[0,t] s€[0,t]

By Burkholder-Davis-Gundy’s inequality we have

1/2

E|sup [S!|| < OE [<SJ>1/2 < Z/ L (™), 5M))2 ds

s€[0,t]

This is upperbounded by

1/2
(/ZLZ £ s) — L, (10, 5m))2 d5> |

which, by Parseval’s Theorem is equal to
1 t ™
V 27T (/0 /;7r

L

_ 9 1/2
L (@)lt:5) ~ L)t s dpas)

e (Id ~ (1a+ 02&*)_1)

The relation

dictates that

2

L (0)(t,5) = L (@)™, s = o (t,5) = (14 + 02K () (17, 5)

(Id + U_Qf(u*(SO))

By the Lipschitz continuity of the application A — (Id+ A)™!, for A a positive operator, we
obtain that

2 2

L#* (90) (t> S) - L#* (30) (t(m)7 S(m)>

C\K (©)(t,5) — K, (9) (2™, s™)

for some positive constant C'. Next we write

t,s) =S Rlp, ) /fvt 5 dea(v),
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from which it follows that

B ()(t5) = Ko () (5] < 3 | Rl )|

/T (@D 0) = f(Won) f (V5em)) dita(v)

> |Rate.m)] ‘ /T ((FD) = £ (W) £ + (F05) = F0hin)) F0fin)) dpia (o)

keZ

Because 0 < f < 1
)Ku*(SO)(t,S) — KM*((p)(t(m)’S(m))’ < % ‘RJ(% k;)) /TZ @0 = F (W0 )L (0F) = F (6| s (v).
By stationarity, we have
[ 150D = )+ 1£68) = £ o)
= [ R = PO 1(8) = e8] (0

<2 sup ol — o) (v)
T

Z 0<t1,t2<T,|ta—t1|<nm
<e€

for m large enough. Thus, we have

B ()8, 5) = Ky () (6, 5| < C=

for some positive constant C, since ), ‘RJ(()@, k:)) < D for some positive constant D
independent of ¢, and therefore, as announced,

E < Ck,

sup |oz?5’1’1|
s€[0,t]

for some positive constant C'. O]

96



Proof of Lemma F.6. We have

) / L (st

i,k,LE€lq,,
Sk YLk Lti+j
(/o M, (s,u) (/0 L, " (u,v) d‘/I/UJFJrJ) du) ds

// Z‘L‘ (t,s) (t(m),s(m))|

i€1g,,

E

|Mk s, u)] / Z LI (u, v) dW duds] <

LEly,,

kely,,

// D L (ts) = L @ s D M (s, )]

i€ly,, kely,,

E | sup / Z Lﬁ:k(u,v)dWUL“H duds.

uE[O,t] 0 LGIq,m
Because [ >, 1, L (u,v) AW s a continuous martingale, the Biirkholder-Davis-
Gundy inequality, Parseval’s Theorem, and Proposition C.8 dictate

1/2

E | sup / Z LE T (u, v) dW || < / Z Lﬁ:k(t,v))de <
0

uel0t] /0 pey Lel,,,

(ALGZLW”) ([

for some positive constant D. Next we have

DML ()| <M (u0)] < B

kElg,, keZ,

©)(t,v)

1/2
d(p dv) <D

for some positive constant E, so that

E < DET? sup Z ‘LZ (s,u) — L (s(m),u(m))‘.

o 0.4
s,u€|0,t

Lk
s€[0,t]

i€1lg,,

Because of Lemma F.7 below there exists a positive convergent series A = (a;);ez such that
for all € > 0 there exists mg(e) such that for all m > my

‘LL*(S,U) — LL*(s(m), u(m))‘ < eq;

for all s,u € [0,t]. This proves the Lemma. ]
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Lemma F.7. Let O be an operator on L*(Z,[0,T)) defined by the continuous kernels O'(t, s),
i € Z.. There exists a positive convergent series A = (a;)iez such that for all € > 0 there
ezists mo(g) such that for all i € Z and for all m > my

|0 (s,u) — Oi(sm), u(m))‘ < eq;
for all s,u € [0,1].

Proof. We proceed by contradiction. Assume that for all positive convergent series A =
(a;)icz there exists iy € Z, so,up € [0,t] and € > 0 such that for all m € N*

ca;, < Oio(so,uo) — Oio(sém),uém)) )

Choosing m large enough and by the continuity of O (s.u) w.r.t. (s,u) we obtain a contra-
diction. []

We proceed with the term of”:

t
o’ =0 Z / Li (10 sm) qiti 4
t

s
ie[fhn &
2!

t

t s v
o ! Z / Li*(t(m),s(m)) (/ Mﬁ*(s,u) </ Lﬁ*k(u,v)deHH) du) ds. (174)
ik Lel,, ”t™ 0 0
ol

Lemma F.2 then follows from the following two Lemmas.

Lemma F.8. For all € > 0, there exists mo(e) in N such that for all m > my

E | sup |al®'|| < Ce

s€[0,t]

for some positive constant C' independent of 7.

Lemma F.9. For all € > 0, there exists mo(e) in N such that for all m > my

E | sup }ag’2’2| < (Ce

s€[0,¢]

for some positive constant C' independent of 7.
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Proof of Lemma F.8. The proof is very similar to that of Lemma F.5. As in this Lemma it
is based upon recognizing that

¢
S = Z / )LL*(t,s) dWiti
tm

i€lgpm

is a continuous martingale with quadratic variation

t

()= 3 [ @ ias

il 7t

because of the independence of the Brownian motions.
We have

E = ok

sup {oz;’g’?’l‘
s€[0,t]

sup \Sg\] ,
s€[0,¢]

and, by Burkholder-Davis-Gundy’s inequality

1/2
E | sup }ag’2’1| < Cio Z/ LZ (t,u)) 2 du <
s€[0,t] icl,,, (m)
010' ~
C’la/ (/ / L, (¢)(tu) d(pdu) )

. 2
The fact that fjﬂ ‘LH*(go) (t,w)‘ dp < C for some positive constant C' uniformly in ¢, w,
follows from Proposition C.8 and ends the proof. O

Remark F.10. The proof of Lemma F.9 is very similar and left to the reader.
Next we write

=0 3 [ (B - LZ’:&@m(tW%s(m’)) v+

zelqm

J/

D> / ) Ly (17, 50)

i,k,L€lq,,
Sk Sk i+j
(/O M (s,u) (/0 L (u,v)de++]) du) ds, (175)
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and define

t
o= S [ (s < L 0, 5)

Sk YLk Ltitj
(/0 M (s, u) (/0 Ly~ (u, v) de+“) du) ds.

Lemma F.3 then follows from the next two Lemmas.

Lemma F.11. For alle > 0,

E | sup }a331| < (Ce

s€[0,t]

for some positive constant C' independent of 7, for all m,n large enough.
Similarly we have
Lemma F.12. For alle > 0,

E | sup }aﬂ32| < Ce

s€[0,t]

for some positive constant C' independent of 7, for all m,n large enough.

Sketch of a proof of Lemma F.11.

/5m t i m m ml m m i+ - .
We note that SP™ = >, [) (L#*(t( ), s(m)) — LZTL(V’”)( tm) s ))> dW!*7 is a martin-
gale. Hence, by the Biirkholder-Davis-Gundy inequality;,

E | sup |S7™| v

s€[0,t]

< GE [(897)17] < CE [(59),]

By the independence of the Brownian motions
2

(577 Z/ LZ ) - LZTZ(VM)((m)’“(m))) du,

i€lq,,

and therefore, by Cauchy-Schwarz
1/2

2
< / Z { m) (™) —LZ:’;(’Vm)(t(m),u(m))) } du

1€1q,,

sup |SJ ™
s€[0,t]

By Proposition C.10 |L{, (£, (™) — Lq’”(lvm)( tm ),u(m))‘ < Dy(p, f1n (V™)) 0(1/]i]?), where

D; is the Wasserstein distance between the two measures u, and fi,,(V."*), we conclude that

E | sup |S§”m|

s€[0,t]

< CiTPE [Dy(jre, fin (V)] Y 0(1/[i*) < CE [Dy(pias fin(Vi"))]

i€y,

for a constant C' > 0. This concludes the proof of the Lemma since Lemma 3.25 implies that
limy, oo B [De (s, 1, (V)] = 0. O
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The proof of Lemma F.12 is very similar and left to the reader. So is the proof of

Lemma F.4.
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