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The mean-field limit of a network of Hopfield neurons
with correlated synaptic weights

Olivier Faugeras1 and James Maclaurin 2 and Etienne Tanré3

May 13, 2019

Abstract

We study the asymptotic behaviour for asymmetric neuronal dynamics in a network
of Hopfield neurons. The randomness in the network is modelled by random couplings
which are centered Gaussian correlated random variables. We prove that the annealed
law of the empirical measure satisfies a large deviation principle without any condition
on time. We prove that the good rate function of this large deviation principle achieves
its minimum value at a unique Gaussian measure which is not Markovian. This im-
plies almost sure convergence of the empirical measure under the quenched law. We
prove that the limit equations are expressed as an infinite countable set of linear non
Markovian SDEs.

AMS Subject of Classification (2010):
60F10, 60H10, 60K35, 82C44, 82C31, 82C22, 92B20

Keywords: Mean-field model; random correlated interactions; thermodynamic limit; large
deviations; nonlinear dynamics; exponential equivalence of measures

1 Introduction

We revisit the problem of characterizing the large-size limit of a network of Hopfield neurons.
Hopfield [14] defined a broad class of neuronal networks and characterized some of their
computational properties [15, 16], i.e. their ability to perform computations. Inspired by
his work Sompolinsky and co-workers studied the thermodynamic limit of these networks
when the interaction term is linear [6] using the dynamic mean-field theory developed in [22]
for symmetric spin glasses. The method they use is a functional integral formalism used in
particle physics and produces the self-consistent mean-field equations of the network. This
was later extended to the case of a nonlinear interaction term, the nonlinearity being an odd

1Université Côte d’Azur, Inria, CNRS, LJAD, France. Olivier.Faugeras@inria.fr,
2New-Jersey Institute of Technology, USA. james.n.maclaurin@njit.edu,
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sigmoidal function [21]. A recent revisit of this work can be found in [7]. Using the same
formalism the authors established the self-consistent mean-field equations of the network
and the dynamics of its solutions which featured a chaotic behaviour for some values of the
network parameters. A little later the problem was picked up again by mathematicians. Ben
Arous and Guionnet applied large deviation techniques to study the thermodynamic limit of
a network of spins interacting linearly with i.i.d. centered Gaussian weights. The intrinsic
spin dynamics (without interactions) is a stochastic differential equation where the drift is
the gradient of a potential. They prove that the annealed (averaged) law of the empirical
measure satisfies a large deviation principle and that the good rate function of this large
deviation principle achieves its minimum value at a unique measure which is not Markovian
[12, 1, 13]. They also prove averaged propagation of chaos results. Moynot and Samuelides
[18] adapt their work to the case of a network of Hopfield neurons with a nonlinear interaction
term, the nonlinearity being a sigmoidal function, and prove similar results in the case of
discrete time. The intrinsic neural dynamics is the gradient of a quadratic potential.

We extend this paradigm by including correlations in the random distribution of network
connections. There is an excellent motivation for this, because it is commonly thought
that neural networks have a small-world architecture, such that the connections are not
completely random, but display a degree of clustering [23]. It is thought that this clustering
could be a reason behind the correlations that have been observed in neural spike trains [5].

We propose a different method to obtain the annealed LDP to previous work by Ben
Arous and Guionnet [1, 13], Faugeras and MacLaurin [10]. The analysis of these papers
centres on the Radon-Nikodym derivative between the coupled state and the uncoupled
state, demonstrating that this converges as the network size asymptotes to infinity. By
contrast, our analysis centres on the SDE governing the finite-dimensional annealed system.
It bears some similarities to the coupling method developed by Sznitman [24] for interacting
particle systems, insofar as we demonstrate that the finite-dimensional SDE converges to the
limiting system superexponentially quickly.

Our method is more along the lines of recent work that uses methods from stochastic
control theory to determine the Large Deviations of interacting particle systems [4]. It is
centered on the idea of constructing an exponentially good approximation of the annealed
law of the empirical measure under the averaged law of the finite size system.

2 Outline of model and main result

Let In = [−n · · ·n], n ≥ 0 be the set of 2n+ 1 integers between −n and n, N := 2n+ 1.
For any positive integer n, let Jn = (J ijn )i, j∈In ∈ RN×N , and consider the system SN(Jn)

of N stochastic differential equations

SN(Jn) :=

{
dV i

t =
∑

j∈In J
ij
n f(V j

t )dt+ σdBi
t i ∈ In

V i
0 = 0

(1)

where (Bi)i∈In is an N -dimensional vector of independent Brownian motions. We assume for
simplicity that V i

0 = 0, i ∈ In. σ is a positive number. The function f : R→ R
+ is bounded
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and Lipschitz continuous. We may assume without loss of generality that f(R) ⊂ [0, 1] and
that its Lipschitz constant is equal to 1. A typical example is

f(x) =
1

1 + e−4x
. (2)

The weights Jn :=
(
J jkn
)
j,k∈In

are, under the probability γ on (Ω,A), centered correlated

Gaussian random variables with a shift invariant covariance function given by

Eγ
[
J ijn J

kl
n

]
=

1

N
RJ ((k − i) mod In, (l − j) mod In) (3)

Remark 2.1. Expectations w.r.t. γ are noted Eγ throughout the paper.

Remark 2.2. Model (1) is a slightly simplified version of the full Hopfield model which
includes a linear term and a general initial condition:

SNfull(Jn) :=

{
dV i

t = −αV i
t dt+

∑
j∈In J

ij
n f(V j

t )dt+ σdBi
t i ∈ In.

Law(V0) = µ⊗N0

(4)

α is a positive constant and µ0 is a probability measure on R with finite variance.
Adding the extra linear term and a more general initial condition does not change the

nature of the mathematical problems we address but complicates the notations.

Here RJ is independent of n and such that

1.
|RJ (k, l)| ≤ akbl (5)

where the two positive sequences (ak) and (bl) are such that

ak = O
(
1/|k|3

)
, and

∑
l∈Z

bl <∞ (6)

We note a and b the sums of the two series (ak)k∈Z and (bk)k∈Z,

a :=
∑
k∈Z

ak b :=
∑
k∈Z

bk (7)

2. There exists a centered Gaussian stationary process (J ij)i,j∈Z with autocorrelation RJ .
Because of (5) this process has a spectral density noted R̃J given by

R̃J (ϕ1, ϕ2) =
∑
k,l∈Z

RJ (k, l)e−ikϕ1e−ilϕ2 , (8)

with i =
√
−1. We assume that this spectral density is strictly positive:

R̃J (ϕ1, ϕ2) > 0 (9)

for all ϕ1, ϕ2 ∈ [−π, π[.
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Remark 2.3. The hypotheses (6) guarantee that the Fourier transform

R̃(ϕ, 0) =
∑
k,l∈Z

RJ (k, l)e−ikϕ

is three times continuously differentiable on [−π, π]. We provide a short proof.

Proof. Define QJ (k) :=
∑

l∈ZRJ (k, l). This is well defined since the series in the right
hand side is absolutely convergent. Because |QJ (k)| ≤ bak, QJ (k) is O(1/|k|3) and hence its
Fourier transform R̃J (ϕ, 0) (see (8)) is three times continuously differentiable.

We have the following Proposition.

Proposition 2.4. For each Jn ∈ RN×N , SN(Jn) has a unique weak solution.

Proof. For each Jn, we have a standard system of stochastic differential equations with
smooth coefficient (Lipschitz continuous). Existence and uniqueness of the solution is well
known.

The solution Vn := (V j)j∈In to the above system defines a T N -valued random variable,
where T = C([0, T ],R).

Given a metric space X, in what follows X = T , T N , or T Z, and the corresponding
distance d we consider the measurable space (X,Bd), where Bd is the Borelian σ-algebra
induced by the topology defined by d, and note P(X) the set of probability measures on
(X,Bd).

We note P ∈ P(T ), the law of each scaled Brownian motion σBi, P⊗N ∈ P(T N) the
law of N independent scaled Brownian motions σBj, j ∈ In, and P⊗Z ∈ P(T Z) the law of
(σBj

t )j∈Z. We also note PN(Jn) ∈ P(T N) the law of the solution to SN(Jn).
We note u = (ui)i∈Z an element of T Z and un = (ui)i∈In its projection on T N .
Given µ ∈ P(T Z) we note µIn ∈ P(T N) its marginal over the set of coordinates of un.
Because of the shift invariance of the covariance RJ we are naturally led to consider

stationary probability measures on T Z. For this, let Si be the shift operator acting on T Z
by

(Siu)j = ui+j, u ∈ T Z, i, j ∈ Z,

and let PS
(
T Z
)

be the space of all probability measures that are invariant under S. This
property obviously implies the invariance under Si, for all integers i. The periodic empirical
measure µ̂n : T N → PS(T Z) is defined to be

µ̂n(un) =
1

N

∑
i∈In

δSiun,p , (10)

where un,p ∈ T Z is the periodic interpolant of un, i.e. such that ujn,p := uj mod In
n . Let

Πn(Jn) = PN(Jn) ◦ µ̂−1
n ∈ P

(
PS(T Z)

)
be the (quenched) law of µ̂n(Vn) under PN(Jn), and

Πn := Eγ[Πn(Jn)] = Eγ
[
PN(Jn)

]
◦ µ̂−1

n ∈ P
(
PS(T Z)

)
be the annealed (averaged) law of
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µ̂n(Vn) under the averaged law Qn := Eγ[PN(Jn)]. Finally let Πn
0 = P⊗N ◦ µ̂−1

n be the law of
µ̂n(σBn), i.e. the law of the empirical measure under P⊗N .

We metrize the weak topology on T Z with the following distance

dT (u, v) =
∑
i∈Z

bi
∥∥f(ui)− f(vi)

∥∥
T

(11)

where ‖f(ui)− f(vi)‖T = supt∈[0,T ] |f(uit)− f(vit)| and the positive sequence bi is defined by
(5).

We use the Wasserstein-1 distance to metrize the weak topology on P(T Z):
given µ, ν ∈ P(T Z) we define

DT (µ, ν) = inf
ξ∈C(µ,ν)

∫
dT (u, v) dξ(u, v), (12)

where C(µ, ν) denotes the set of probability measures on T Z × T Z with marginals µ and ν
on the first and second factors (couplings).

The following is our main result.

Theorem 2.5.

(i) The sequence of laws
(
Πn
)
n∈Z+ satisfies a Large Deviation Principle with respect to the

weak topology on PS(T Z), with good rate function H(µ) : PS
(
T Z
)
→ R.

(ii) The rate function H has the following structure. If it is not the case that µIn � P⊗N

for all n, then H(µ) =∞, otherwise

H(µ) = inf
ζ∈PS(T Z):Ψ(ζ)=µ

{
I(3)(ζ)

}
, (13)

where the measurable function Ψ : PS(T Z) → PS(T Z) is defined in Section 3.2. and
I(3) in Theorem 2.6.

(iii) H has a unique zero µ∗ = Ψ(P⊗Z).

(iv) µ∗ is the law of the unique weak solution Z of the following system of McKean-Vlasov-
type equations,

Zj
t = σW j

t + σ

∫ t

0

θjsds (14)

θjt = σ−2
∑
i∈Z

∫ t

0

Li−jµ∗ (t, s)dZi
s.

The sequence of processes
(
σW j

)
j∈Z is distributed as P⊗Z, and Lµ∗ is defined in Re-

mark 3.3 and Appendix C.1. Furthermore µ∗ is Gaussian.
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The proof of this theorem uses the following, classical, theorem [3] and [8, Section 6].
Recall that Πn

0 is the law of the empirical measure under P⊗N .

Theorem 2.6. The sequence of laws
(
Πn

0

)
n∈Z+ satisfies a large deviation principle with good

rate function I(3) on PS(T Z). The specific relative entropy is

I(3)(µ) = lim
n→∞

1

N
I(2)
(
µIn|P⊗N

)
, (15)

where, for measures ν and ρ on RN , the relative entropy I(2) is defined by

I(2)(ρ|ν) =


∫
RN

log
dρ

dν
(x)ν(dx) if ρ� ν

+∞ otherwise,

see e.g. [9].
The unique zero of I(3) is P⊗Z.

A standard argument yields that the averaged LDP of the previous theorem implies
almost sure convergence of the empirical measure under the quenched law [1]. This is stated
in the following corollary.

Corollary 2.7. For almost every realization of the weights and Brownian motions,

µ̂n(Vn)→ µ∗ as N →∞.

Proof. The proof is standard. It follows from an application of Borel-Cantelli’s Lemma to
Proposition 2.9.

Remark 2.8. Note that this implies that for all f ∈ Cb(T Z) and for almost all ω ∈ Ω.

lim
N→∞

1

N

∫
T N

∑
i∈In

EPN (Jn)(ω)f(SiVn,p) =

∫
T Z
f(v) dµ∗(v) (16)

Proposition 2.9. For any closed set F of PS(T Z) and for almost all Jn,

lim sup
N→∞

1

N
log
[
PN(Jn)(µ̂n ∈ F )

]
≤ − inf

µ∈F
H(µ).

Proof. The proof, found in [1, Th. 2.7], follows from an application of Borel-Cantelli’s
Lemma.

Remark 2.10. Note that in the case we assume the synaptic weights to be uncorrelated,
equations (14) reduce to

Zt = σWt + σ−1

∫ t

0

∫ s

0

Lµ∗(s, u)dZuds (17)

which is exactly the one found in [1, Th. 5.14].
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3 Proof of Theorem 2.5

Our strategy is partially inspired from the one in [1, 13]. We apply Girsanov’s Theorem
to SN(Jn) to obtain the Radon-Nikodym derivative of the measure PN(Jn) with respect to
the measure P⊗N of the system of N uncoupled neurons. We then show that the average
Qn of PN(Jn) w.r.t. to the weights is absolutely continuous w.r.t. P⊗N and compute
the corresponding Radon-Nikodym derivative which characterizes the averaged (annealed)
process. As in the work of Ben Arous and Guionnet [1], the idea is to deduce our LDP
from the one satisfied by the sequence (Πn

0 )n∈N. We differ from the work of Ben Arous
and Guionnet in that in order to obtain the Large Deviation Principle that governs this
process we approximate the averaged system of SDEs with a system with piecewise constant
in time coefficients by discretizing the time interval [0, T ] into m subintervals of size T/m,
for m an integer. This system allows us to construct a sequence of continuous maps Ψm :
PS(T Z) → PS(T Z) and a measurable map Ψ : PS(T Z) → PS(T Z) such that the sequence
Ψm converges uniformly toward Ψ on the level sets of the good rate function of the LDP
satisfied by Πn

0 . We then show that for a specific choice m(n) of m as a function of n the
sequence Πn

0 ◦ (Ψm(n))−1 is an exponentially good approximation of the sequence Πn. The
LDP for Πn and the corresponding good rate function then follow from a Theorem by Dembo
and Zeitouni, [8, Th. 4.2.23].

In more details, we use Girsanov’s Theorem to establish in Section 3.1 the SDEs whose
solution’s law is the averaged law Qn. In Section 3.2 we construct an approximation of these
equations by a) discretizing the time interval [0, T ] with m subintervals and b) cutting off the
spatial correlation of the weights so that it extends over [−qm, qm] rather than over [−n, n],
qm ≤ n. We then use this approximation to construct the family (Ψm)m∈N of continuous
maps. Section 3.3 contains the proof of our main Theorem 2.5. This proof contains two main
ingredients, the exponential tightness of (Πn)n∈Z+ proved in Section 3.4, and the existence of
an exponential approximation of the family of measures (Πn)n∈Z+ by the family of measures
(Πm,n)m,n∈Z+ = Πn

0 ◦ (Ψm)−1 constructed from the law of the solutions to the approximate
equations. The existence of this exponential approximation and the possible choices for m
and qm as functions of n are proved in Section 3.5. The unique minimum of the rate function
is characterized in Section 3.6.

3.1 The SDEs governing the Finite-Size Annealed Process

For every Jn ∈ RN×N , PN(Jn) is a probability measure on T N and as a consequence of
Girsanov’s theorem

dPN(Jn)

dP⊗N

∣∣∣∣
FT

=

exp

{
1

σ

∑
i∈In

∫ T

0

(∑
j∈In

J ijn f(Xj
t )

)
dBi

t −
1

2σ2

∑
i∈In

∫ T

0

(∑
j∈In

J ijn f(Xj
t )

)2

dt

 ,
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where
Xj
t = σBj

t (18)

In Proposition 3.4 below, we demonstrate that the Radon-Nikodym derivative of Qn w.r.t.
P⊗N exists and is a function of the empirical measure. To facilitate this, we must introduce
intermediate centered Gaussian Processes (Gi

t)i∈In,t∈[0,T ], for which it turns out that their
probability law is entirely determined by the empirical measure, i.e.

Gi
t =

∑
j∈In

J ijn f(Xj
t ), i ∈ In. (19)

It can be verified that the covariance is entirely determined by the empirical measure,
i.e., according to equation (3)

Eγ
[
Gi
tG

k
s

]
=

∫
Ω

Gi
t(ω)Gk

s(ω) dγ(ω) =

1

N

∑
l,j∈In

RJ ((k − i) mod In, (l − j) mod In)f(Xj
t )f(X l

s) =

∑
m∈In

RJ ((k − i) mod In,m)
1

N

∑
j∈In

f(Xj
t )f(X(j+m) mod In

s ) =

∑
m∈In

RJ ((k − i) mod In,m)

∫
T Z
f(v0

t )f(vms ) dµ̂n(Xn)(v) := Kk−i
µ̂n(Xn)(t, s). (20)

Remark 3.1. Note that we have shown that under γ, the sequence Gi, i ∈ In, is centered,
stationary with covariance Kµ̂n(Xn). To make this dependency explicit we write γµ̂n(Xn) the
law under which the Gaussian process (Gi

t)i∈In,t∈[0,T ] has mean 0 and covariance Kµ̂n(Xn).

Before we prove the following proposition which is key to the whole approach we need to
introduce a few more notations. We note

Λt(G) :=
exp

{
− 1

2σ2

∑
i∈In

∫ t
0

(Gi
s)

2
ds
}

Eγµ̂n(Xn)
[
exp

{
− 1

2σ2

∑
i∈In

∫ t
0

(Gi
s)

2 ds
}] , (21)

and define the new probability law

γ̄
µ̂n(Xn)
t := Λt(G) · γµ̂n(Xn). (22)

Remark 3.2. More generally given a measure µ in PS(T Z) we note γµ the law under which
the Gaussian process (Gi

t)i∈In,t∈[0,T ] has mean 0 and covariance Kµ such that

Kk
µ(t, s) =

∑
m∈In

RJ (k,m)

∫
T Z
f(v0

t )f(vms ) dµ(v)
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and
γ̄µt := Λµ

t (G) · γµ,

where

Λt(G) :=
exp

{
− 1

2σ2

∑
i∈In

∫ t
0

(Gi
s)

2
ds
}

Eγµ
[
exp

{
− 1

2σ2

∑
i∈In

∫ t
0

(Gi
s)

2 ds
}] .

The properties of Kµ are proved in Appendix C. Note that we do not make explicit the
dependency of Λ on µ since it is always clear from the context, see next remark.

Remark 3.3. To each covariance Kµ defined in Remark 3.2 we associate a new covariance
Ltµ such that

Lt,kµ (s, u) = Eγµ
[
Λt(G)G0

sG
k
u

]
= Eγ̄

µ
t
[
G0
sG

k
u

]
for all 0 ≤ s, u ≤ t. The properties of Ltµ, in particular the fact that it is a covariance, are
stated and proved in Appendix C. For the sake of simplicity and because it is always clear
from the context, we drop the upper index t and write Lkµ instead of Lt,kµ .

Proposition 3.4. The measures Qn and P⊗N are equivalent, with Radon-Nikodym derivative
over the time interval [0, t] equal to

dQn

dP⊗N

∣∣∣∣
Ft

= exp

(∑
j∈In

∫ t

0

θjsdB
j
s −

1

2

∑
j∈In

∫ t

0

(
θjs
)2
ds

)
, where (23)

θjt = σ−2Eγ̄
µ̂n(Xn)
t

[∑
i∈In

Gj
t

∫ t

0

Gi
sdB

i
s

]
. (24)

Proof. As stated above, by the Girsanov’s Theorem we have

dPN(Jn)

dP⊗N

∣∣∣∣
Ft

=

exp

{
1

σ

∑
i∈In

∫ t

0

(∑
j∈In

J ijn f(Xj
s )

)
dBi

s −
1

2σ2

∑
i∈In

∫ t

0

(∑
j∈In

J ijn f(Xj
s )

)2

ds

 .

Applying the Fubini-Tonelli theorem to the positive measurable function dPN (Jn)
dP⊗N

we find
that Qn << P⊗N and

dQn

dP⊗N

∣∣∣∣
Ft

= Eγ
[

exp

{
1

σ

∑
i∈In

∫ t

0

(∑
j∈In

J ijn f(Xj
s )

)
dBi

s−

1

2σ2

∑
i∈In

∫ t

0

(∑
j∈In

J ijn f(Xj
s )

)2

ds

}]
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Moreover, under γ,
{∑

j∈In J
ij
n f(Xj

t ), i ∈ In, t ≤ T
}

is a centered Gaussian process with

covariance Kµ̂n(Xn), thanks to (19) and (20). Therefore we have:

dQn

dP⊗N

∣∣∣∣
Ft

= Eγµ̂n(Xn)

[
exp

{
1

σ

∑
i∈In

∫ t

0

Gi
s dB

i
s

}
× exp

{
− 1

2σ2

∑
i∈In

∫ t

0

(
Gi
s

)2
ds

}]
.

Divide and multiply the right hand side by Eγµ̂n(Xn)
[
exp

{
− 1

2σ2

∑
i∈In

∫ t
0

(Gi
s)

2
ds
}]

to ob-

tain, thanks to (21) and (22):

Eγµ̂n(Xn)

[
exp

{
1

σ

∑
i∈In

∫ t

0

Gi
s dB

i
s −

1

2σ2

∑
i∈In

∫ t

0

(
Gi
s

)2
ds

}]
=

Eγµ̂n(Xn)

[
exp

{
− 1

2σ2

∑
i∈In

∫ t

0

(
Gi
s

)2
ds

}]
× Eγ̄

µ̂n(Xn)
t

[
exp

{
1

σ

∑
i∈In

∫ t

0

Gi
s dB

i
s

}]
(25)

By Gaussian calculus and (22)

Eγ̄
µ̂n(Xn)
t

[
exp

{
1

σ

∑
i∈In

∫ t

0

Gi
s dB

i
s

}]
= exp

 1

2σ2
Eγ̄

µ̂n(Xn)
t

(∑
i∈In

∫ t

0

Gi
s dB

i
s

)2
 =

exp

 1

2σ2
Eγµ̂n(Xn)

(∑
i∈In

∫ t

0

Gi
s dB

i
s

)2

Λt(G)


This shows that

dQn

dP⊗N

∣∣∣∣
Ft

=

Eγµ̂n(Xn)

[
exp

{
− 1

2σ2

∑
i∈In

∫ t

0

(
Gi
s

)2
ds

}]
×exp

 1

2σ2
Eγµ̂n(Xn)

(∑
i∈In

∫ t

0

Gi
s dB

i
s

)2

Λt(G)


(26)

The above expression demonstrates that Qn
|Ft is equivalent to P⊗N|Ft for all t ∈ [0, T ], since

the above exponential cannot be zero on any set A ∈ B(T N) such that P⊗N(A) 6= 0. Thus
by Girsanov’s Theorem [19],

Zt = exp

(∑
j∈In

∫ t

0

θjsdB
j
s −

1

2

∑
j∈In

∫ t

0

(
θjs
)2
ds

)
,

10



where Zt = dQn

dP⊗N

∣∣
Ft

, and θjt = d
dt
〈logZ·, B

j
· 〉t.

θjt =
d

dt

〈
Bj
· ,

1

2σ2
Eγµ̂n(Xn)

(∑
i∈In

∫ ·
0

Gi
s dB

i
s

)2

Λ·

〉
t

+
d

dt

〈
Bj
· , log

(
Eγµ̂n(Xn)

[
exp

{
− 1

2σ2

∑
i∈In

∫ ·
0

(
Gi
s

)2
ds

}])〉
t

. (27)

the second bracket only contains a finite variation process, so its bracket with Bj is 0.
Furthermore the probability measure γµ̂n(Xn) ∈ PS(T Z) does not change with time, hence
we may commute the bracket and expectation as follows,

θjt =Eγµ̂n(Xn)

 d
dt

〈
Bj
· ,

1

2σ2
Λ·(G)

(∑
i∈In

∫ ·
0

Gi
s dB

i
s

)2〉
t


=

1

2σ2
Eγµ̂n(Xn)

[
2
∑
i∈In

Λt(G)Gj
t

∫ t

0

Gi
sdB

i
s

]
, (28)

since Λt is time-differentiable, and we have used Ito’s Lemma. To be sure, we have carefully
double checked (using multiple applications of Ito’s Formula) that the time-differentiable
terms in (27) are of the correct form. We thus have proved the Proposition, using (22)
again.

Remark 3.5. By writing Gj, Gi and Λt(G) as functions of the synaptic weights in (28) and
using their stationarity, θjt can be rewritten as

θjt = σ−2
∑
i∈In

Eγ̄
µ̂n(Xn)
t

[
G0
t

∫ t

0

Gi
sdB

i+j
s

]
= σ−2

∑
i∈In

Eγµ̂n(Xn)

[
Λt(G)G0

t

∫ t

0

Gi
sdB

i+j
s

]
={

σ−2
∑

i∈In E
γ
[
Λt(G)G0

t

∫ t
0
Gi
sdB

i+j
s

]
and Gi

t =
∑

k∈In J
ik
n f(Xk

t )
,

with indexes taken modulo In.

Since Qn and P⊗N are equivalent, by Girsanov’s Theorem we obtain the following imme-
diate corollary of Proposition 3.4. Part (ii) of the corollary is immediate from the definitions.

Corollary 3.6.
(i) Let Vn ∈ T N have law Qn. There exist processes W j

t that are independent Brownian
motion under Qn and such that Vn is the unique weak solution to the following equations

V j
t = σW j

t + σ

∫ t

0

θjsds (29)

θjt = σ−2
∑
i∈In

Eγ̄
µ̂n(Vn)
t

[
G0
t

∫ t

0

Gi
sdV

i+j
s

]
. (30)

(ii) The law of µ̂n(σWn) under Qn is Πn
0 .

11



3.2 Approximation of the Finite-Size Annealed Process and con-
struction of the sequence of maps Ψm

It is well known that Large Deviations Principles are preserved under continuous transfor-
mations. However we cannot in general find a continuous mapping Γn on PS(T Z) such
that Γn

(
µ̂n(σWn)

)
= µ̂n(Vn), where Vn is defined in Corollary 3.6. Therefore to prove the

LDP, we will use ‘exponentially equivalent approximations’. This technique approximates
the mapping µ̂n(σWn)→ µ̂n(Vn) by a sequence of continuous approximations. Our next step
therefore is to define the continuous map Ψm : PS(T Z)→ PS(T Z) (for positive integers m),
which will be such that for any δ > 0, the probability that DT

(
Ψm(µ̂n(σWn)), µ̂n(Vn)

)
> δ is

superexponentially small. These approximations will converge to the map Ψ that is defined
in the proof of Theorem 2.5. This is done in two steps: First approximate the system (29)-
(30) by discretizing the time and cutting off the correlation between the synaptic weights
and, second, by using this approximation to construct the map Ψm from PS(T Z) to itself.

3.2.1 Approximation of the system of equations (29)-(30)

To this aim, we use an Euler scheme type approximation: the integrand of V j
t is replaced by

a piecewise constant in time version. Let ∆m, m a strictly positive integer, be a partition of
[0, T ] with steps ηm := T

m
into the (m+ 1) points pηm, for p = 0 to m, and for any t ∈ [0, T ],

write t(m) := pηm such that t ∈ [pηm, (p+ 1)ηm).
To obtain the Large Deviation Principle, we need to approximate the expression for Vn in

Corollary 3.6 by a continuous map. The approximate system has finite-range spatial interac-
tions. The spatial interactions have range Qm = 2qm+1 (with 0 < qm < n). The parameters
m and qm are specified as functions of n in Remark D.2 in the proof of Lemma 3.21.

More precisely, following (29), the approximate system is of the form, for j ∈ In

V m,j
t = σ−1

∑
i∈Iqm

∫ t

0

Eγµ̂n(Vmn )

[
Λs(m)(Gm)Gm,0

s(m)

∫ s(m)

0

Gm,i

u(m)dV
m,i+j
u

]
ds+ σW j

t (31)

indexes i + j are taken modulo In. The Iqm-periodic centered stationary Gaussian process
(Gm,i

t )i∈Iqm ,t∈[0,T ] is defined by

Gm,i
t =

∑
k∈In

J ikn,mf(V m,k
t ), i ∈ Iqm , (32)

where the {J ikn,m}i∈Iqm ,k∈In are centered Gaussian Random variables with covariance (remem-
ber (3))

Eγ
[
J ijn,mJ

kl
n,m

]
=

1

N
RJ (k − i mod Iqm , l − j mod In)1Iqm (l − j mod In), (33)

where 1Iqm is the indicator function of the set Iqm . Note that the sum in (32) is for k ∈ In.

12



The W j
t s are Brownian motions and (remember (21))

Λt(m)(Gm) :=
exp

{
− 1

2σ2

∫ t(m)

0

∑
i∈Iqm

(Gm,i
s )2ds

}
Eγµ̂n(Vmn )

[
exp

{
− 1

2σ2

∫ t(m)

0

∑
i∈Iqm

(Gm,i
s )2 ds

}] , (34)

It is important for the upcoming definition of the map Ψm that the covariance between
the Gaussian variables (Gm,i

t ) can be written as a function of the empirical measure µ̂n(V m
n )

which we now demonstrate. One verifies easily that

Cov(Gm,i
t , Gm,k

s ) =
∑
j,l∈In

Cov(J ijn,m, J
kl
n,m)f(V m,j

t )f(V m,l
s ) =

1

N

∑
j,l∈In

RJ (k − i mod Iqm , l − j mod In)1Iqm (l − j mod In)f(V m,j
t )f(V m,l

s ) =

∑
K∈Iqm

RJ (k − i mod Iqm , K)
1

N

∑
j∈In

f(V m,j
t )f(V m,j+K

s ) =

∑
K∈Iqm

RJ (k − i mod Iqm , K)

∫
f(w0

t )f(wKs ) dµ̂n(V m
n )[w] =

∑
K∈Iqm

RJ (k − i mod Iqm , K)Eµ̂n(Vmn )
[
f(w0

t )f(wKs )
]
. (35)

This implies that (31) can be rewritten

V m,j
t = σ−1

∑
k∈Iqm

∫ t
0
Eγ̄

µ̂n(Vmn )

s(m)

[
Gm,0

s(m)

∫ s(m)

0
Gm,k

u(m)dV
m,k+j
u

]
ds+ σW j

t , j ∈ In (36)

or 
V m,j
t = σW j

t + σ

∫ t

0

θm,js ds

θm,jt = σ−2
∑
k∈Iqm

Eγ̄
µ̂n(Vmn )

t(m)

[
Gm,0

t(m)

∫ t(m)

0

Gm,k

s(m)dV
m,k+j
s

]
, j ∈ In

(37)

3.2.2 Construction of the sequence of maps Ψm

In order to construct the map Ψm we rewrite (36) in terms of the increment of V m
t − V m

t(m)

of the process V m:

V m,j
t = V m,j

t(m) +σ−1
∑
k∈Iqm

∫ t

t(m)

Eγ̄
µ̂n(Vmn )

s(m)

[
Gm,0

s(m)

∫ s(m)

0

Gm,k

u(m)dV
m,k+j
u

]
ds+σ(W j

t −W
j

t(m)), j ∈ In.

(38)
We can now generalize (38) by considering a general measure ν in PS(T Z) and simply

replacing γ̄
µ̂n(Vmn )
s by γ̄νs in this equation. This is the basic idea but we have to be slightly

more careful.
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In detail, following Remark 3.1, given ν = (ν1, ν2) ∈ PS((T Z)2) we define the Iqm-
periodic centered stationary Gaussian process (Gm,i

t )i∈Iqm ,t∈[0,T ], i.e. its covariance function,
by (patterning after (35))

Cov(Gm,i
t , Gm,k

s ) = Eγν1
[
Gm,i
t Gm,k

s

]
=
∑
K∈Iqm

RJ (k − i mod Iqm , K)Eν1
[
f(w0

t )f(wKs )
]
. (39)

Given two elements X and Y of T Z we define the m elements Zu of T Z for u = 0, · · · ,m−1
by

∀t ∈ [uηm, (u+ 1)ηm], j ∈ Z,

Zu,j
t = Y j

uηm + σ−1
∑
i∈Iqm

∫ t

uηm

Eγ̄
ν1
uηm

[
Gm,0
uηm

u−1∑
v=0

∫ (v+1)ηm

vηm

Gm,i
vηmdY

u,i+j
v

]
ds

+ σ(Xj
t −Xj

uηm) (40)

Zu,j
t = Y j

t , t ≤ uηm, u > 0

and
Zu,j
t = Zu,j

(u+1)ηm
, t ≥ (u+ 1)ηm.

Remark 3.7. Note that

(a) if Xj
t and Y j

t are N-periodic, so is Zj
t .

(b) the expected value Eγ̄
ν1
uηm in (40) acts only on the Gaussian random variables Gm and

not on the Y s.

This defines the sequence of mappings ψmu : PS((T Z)2)× (T Z)2 → (T Z)2, u = 0, · · · ,m−
1, by

ψmu (ν, Y,X) = (Zu, X), (41)

the sequence of mappings Ψm
u : PS((T Z)2)→ PS((T Z)2), u = 0, · · · ,m− 1 by

Ψm
u (ν) = ν ◦ ψmu (ν, ·, ·)−1, (42)

and finally the mapping Ψm : PS(T Z)→ PS(T Z) by

Ψm(µ) = (Ψm
m−1 ◦ · · · ◦Ψm

0 ◦Ψ0(µ))1, (43)

where Ψ0 : P(T Z)→ P((T Z)2) is defined by

Ψ0(µ) = µ ◦ ι, (44)

and ι : T Z → (T Z)2 is defined as
ι(x)j = (0, xj) (45)

We then have the following Lemma.
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Lemma 3.8. The function Ψm defined by (43) is continuous in (PS(T Z), DT ) and satisfies

Ψm(µ̂n(σWn)) = µ̂n(V m
n ),

where V m
n is the solution to (36).

Proof. Ψm is continuous:
Recall the formula (40) for Zu,j

t :

Zu,j
t = Y j

uηm + σ−1
∑
i∈Iqm

∫ t

uηm

Eγ̄
ν1
uηm

[
Gm,0
uηm

u−1∑
v=0

∫ (v+1)ηm

vηm

Gm,i
vηmdY

u,i+j
v

]
ds + σ(Xj

t − Xj
uηm)

Note that ∫ (v+1)ηm

vηm

Gm,i
vηmdY

u,i+j
v = Gm,i

vηm

(
Y u,i+j

(v+1)ηm
− Y u,i+j

vηm

)
,

and hence

Eγ̄
ν1
uηm

[
Gm,0
uηm

u−1∑
v=0

∫ (v+1)ηm

vηm

Gm,i
vηmdY

u,i+j
v

]

= Eγν1
[

Λuηm(Gm)Gm,0
uηm

u−1∑
v=0

Gm,i
vηm

(
Y u,i+j

(v+1)ηm
− Y u,i+j

vηm

)]

=
u−1∑
v=0

Eγν1
[
Λuηm(Gm)Gm,0

uηmG
m,i
vηm

] (
Y u,i+j

(v+1)ηm
− Y u,i+j

vηm

)
,

since Eγν1 does not operate on Y u,i+j, see Remark 3.7(b). Using Remark 3.3 we can conclude
that

Zu,j
t = Y j

uηm + σ−1
∑
i∈Iqm

∫ t

uηm

u−1∑
v=0

Liν1(uηm, vηm)(Y u, i+j
(v+1)ηm

− Y u, i+j
vηm ) ds

+ σ(Xj
t −Xj

uηm), t ∈ [uηm, (u+ 1)ηm]

The quantities Liν1(uηm, vηm) are defined in Remark 3.3 and in Appendix C. The con-
tinuity of ψmu follows from the facts that this equation is linear in X, Y and Z, and the
mapping ν → Lν1 is continuous, see Proposition C.10. The continuity of Ψm

u follows from
(42) and that of Ψm from (43) and the continuity of Ψ0 defined by (44) and (45).
Ψm(µ̂n(σWn)) = µ̂n(Vm

n ), where Vm
n is the solution to (36):

We use the following Lemma.

Lemma 3.9.

(i) We have µ̂n(Xn)◦ι = µ̂n(0n, Xn) ∈ PS((T Z)2) for all Xn ∈ T N , where 0n = (0, · · · , 0) ∈
T N .
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(ii) Let Xn,2 = (X1
n, X

2
n) be an element of (T N)2, and µ̂n(Xn,2) = 1

N

∑
i∈In δ(SiX1

n,p,S
iX2

n,p)

(remember (10)) the corresponding empirical measure in PS((T Z)2). Let ϕ : (T Z)2 →
(T Z)2, be a measurable function. Then it is true that

µ̂n(Xn,2) ◦ ϕ−1 = µ̂n(ϕ(Xn,2)),

where, with a slight abuse of notation, if Xn,2,p ∈ (T Z)2 is the periodic extension of
Xn,2 ∈ (T N)2, i.e. (X1

n,p, X
2
n,p), and ϕ(Xn,2,p) = (Y 1, Y 2) ∈ (T Z)2 we define

ϕ(Xn,2) = ϕ(Xn,2,p) = ((Y 1
−n, · · · , Y 1

n ), (Y 2
−n, · · · , Y 2

n )).

We first prove that Lemma 3.9 is enough to conclude the proof of Lemma 3.8. First,
statement (i) of Lemma 3.9 implies

Ψ0(µ̂n(σWn)) = µ̂n(σWn) ◦ ι = µ̂n(0n, σWn).

Going one step further, and using the definition (42) and statement (ii) of Lemma 3.9

Ψm
0 (Ψ0(µ̂n(σWn))) = Ψm

0 (µ̂n(0n, σWn)) = µ̂n(0n, σWn) ◦ ψm0 (µ̂n(0n, σWn), ·, ·)−1 =

µ̂n(ψm0 (µ̂n(0n, σWn), 0n,Wn)) = µ̂n( 0V m, σWn),

where 0V m is equal to the solution of (36) on the time interval [0, ηm]. According to Re-
mark 3.7, 0V m,j

t is N -periodic in the variable j for t ∈ [0, ηm].
Next we have

Ψm
1 (Ψm

0 (Ψ0(µ̂n(σWn)))) = Ψm
1 (µ̂n( 0V m, σWn)) = µ̂n( 0V m, σWn) ◦ ψm1 (µ̂n( 0V m, σWn), ·, ·)−1

= µ̂n(ψm1 (µ̂n( 0V m, σWn), 0V m, σWn)) = µ̂n( 1V m, σWn),

where 1V m is equal to the solution of (36) on the time interval [0, 2ηm], and again N -periodic.
One concludes that

Ψm
m−1 ◦ · · · ◦Ψm

0 ◦Ψ0(µ̂n(σWn)) = µ̂n(m−1V m, σWn),

where m−1V m is equal to the N -periodic solution of (36) on the time interval [0,mηm] = [0, T ]
i.e. V m

n .
Therefore,

Ψm(µ̂n(σWn)) = (Ψm
m−1 ◦ · · · ◦Ψm

0 ◦Ψ0(µ̂n(σWn)))1 = (µ̂n(m−1V m, σWn))1

= µ̂n(m−1V m) = µ̂n(V m
n )

We now prove Lemma 3.9.

Proof of Lemma 3.9.
(i) For any Borelian of (T Z)2 we have µ̂n(Xn) ◦ ι(A) = µ̂n(Xn)(ι−1(A)) = µ̂n(Xn)((A∩ {0×
T Z})2), where (A ∩ {0× T Z})2 is the second coordinate y of the elements of A of the form
(0, y). This means that µ̂n(Xn) ◦ ι = µ̂n(0n, Xn).
(ii) Let A be a Borelian of (T Z)2. We have

(µ̂n(Xn,2) ◦ ϕ−1)(A) = µ̂n(Xn,2)(ϕ−1(A)) = µ̂n(ϕ(Xn,2))(A),

and the conclusion of the Lemma follows.
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3.3 Proof of Theorem 2.5.(i)-(iii)

It turns out to be convenient, in order to prove the Theorem, to use the L2 distance on T Z
given by

dL2(u, v) =
∑
i∈Z

bi
∥∥f(ui)− f(vi)

∥∥
L2

(46)

where ∥∥f(ui)− f(vi)
∥∥2

L2 =

∫ T

0

(
f(uit)− f(vit)

)2
dt.

The reason for this is that we are then able to use the tools of Fourier analysis since the
measures we consider are shift invariant, i.e. invariant to spatial translations.

Let DT,L2 be the corresponding Wasserstein-1 metric on P(T Z) induced by dL2(u, v).

Remark 3.10. The topology induced by DT,L2 on P(T Z) is coarser than the one induced
by DT . Hence it will suffice for us to prove the LDP with respect to the topology on P(T Z)
induced by the metric DT,L2. This is because we prove in Lemma 3.15 that the sequence Πn is
exponentially tight for the topology induced by DT on P(T Z). We can then use [8, Corollary
4.2.6] which states that if Πn satisfies an LDP for a coarser topology, then it does satisfy the
same LDP for a finer topology. Lemma 3.15 is proved in Section 3.4.

We use [8, Th. 4.2.23] to prove the LDP for µ̂n(Vn) on PS(T Z) induced by the metric
DT,L2 . The common probability space in which we perform the exponentially equivalent ap-

proximations is (T N , Qn) which contains the random variable (V j
t ), as well as (as explained

in Corollary 3.6) the random variables (σW j
t ) which are distributed as P⊗N . We approxi-

mate µ̂n(Vn) by Ψm
(
µ̂n(σWn)

)
. It is noted in Lemma 3.8 that the approximations Ψm are

continuous with respect to the topology induced by DT , so that they must also be continuous
with respect to the topology induced by DT,L2 .

The proof is based on Lemma 3.16. According to this Lemma for any j ∈ N∗, we have

lim
m→∞

lim
n→∞

1

N
logQn

(
DT,L2

(
Ψm
(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> 2−j−1

)
= −∞.

We define mj to be the smallest integer strictly bigger than mj−1 such that

sup
m≥mj

lim
n→∞

1

N
logQn

(
DT,L2

(
Ψm
(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> 2−j−1

)
≤ −j. (47)

By construction, the sequence (mj)j≥1 is strictly increasing and hence limj→∞mj =∞.
Next define the sets

Aj =

{
µ : DT,L2

(
Ψmj(µ),Ψmj+1(µ)

)
≤ 2−j

}
, j ∈ N∗, (48)

and the set
A = lim inf

k
Ak =

⋃
j∈N+

⋂
k≥j

Ak. (49)

The following Lemma shows that A is not empty.
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Lemma 3.11. If I(3)(µ) <∞, then µ ∈ A.

Proof. We prove that if I(3)(µ) < j, then µ ∈ Aj and so we also have µ ∈
⋂
k≥j Ak. By

Theorem 2.6, we know that

− inf
µ∈Acj

I(3)(µ) ≤ lim
n→∞

1

N
log Πn

0

(
Ac
j

)
≤ lim

n→∞

1

N
log Πn

0

(
Ac
j

)
. (50)

But

Ac
j ⊂ {µ,DT,L2

(
Ψmj(µ, µ̂n(Vn)

)
> 2−(j+1)} ∪ {µ,DT,L2

(
Ψmj+1(µ), µ̂n(Vn)

)
> 2−(j+1)}.

We deduce by Corollary 3.6 that

Πn
0

(
Ac
j

)
≤

Πn
0

(
DT,L2

(
Ψmj(µ), µ̂n(Vn)

)
> 2−(j+1)

)
+ Πn

0

(
DT,L2

(
Ψmj+1(µ), µ̂n(Vn)

)
> 2−(j+1)

)
≤Qn

(
DT,L2

(
Ψmj

(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> 2−(j+1)

)
+Qn

(
DT,L2

(
Ψmj+1

(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> 2−(j+1)

)
≤Qn

(
DT,L2

(
Ψmj

(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> 2−(j+1)

)
+Qn

(
DT,L2

(
Ψmj+1

(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> 2−(j+2)

)
In addition, using log(a + b) ≤ log(2 max(a, b)) = log(2) + max(log(a), log(b)) and (47), we
obtain

lim
n→∞

1

N
log Πn

0

(
Ac
j

)
≤

max

{
lim
n→∞

1

N
logQn

(
DT,L2

(
Ψmj

(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> 2−(j+1)

)
,

lim
n→∞

1

N
logQn

(
DT,L2

(
Ψmj+1

(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> 2−(j+2)

)}
≤

max

{
− j,−(j + 1)

}
= −j.

Then, by (50) we conclude that ∀µ ∈ Ac
j we have I(3)(µ) ≥ j. It ends the proof.

We define Ψ : A→ PS
(
T Z
)

as follows

Ψ(µ) = lim
j→∞

Ψmj(µ), (51)

It follows from the definitions (48) and (49) that
(
Ψmj(µ)

)
j∈N∗ is Cauchy so that the limit in

(51) exists. In effect given j ≥ 0 it is true that µ ∈
⋂
k≥j Ak. since, by the triangle inequality:

DT,L2(Ψmj(µ),Ψmj+k(µ)) ≤
k−1∑
l=0

DT,L2(Ψmj+l(µ),Ψmj+l+1(µ)) ≤
k−1∑
l=0

2−(j+l) ≤ 2−(j−1),

18



it is true that limj,k→∞DT,L2(Ψmj(µ),Ψmj+k(µ)) = 0.
In the notation of [8, Th. 4.2.23], ε = N−1, µ̃ε = Πn, f := Ψ, µε = Πn

0 and f j := Ψmj .
Step 1: Exponential equivalence
The ‘exponentially equivalent’ property requires that for any δ > 0, and recalling the

definition of Vn in Corollary 3.6 and the fact that the law of µ̂n(Vn) is Πn (also in Corol-
lary 3.6),

lim
j→∞

lim
n→∞

1

N
logQn

(
DT,L2

(
Ψmj

(
µ̂n(σWn)

)
, µ̂n(Vn)

)
> δ

)
= −∞. (52)

This is an immediate consequence of (47) which in turn follows from Lemma 3.16.
Step 2: Uniform Convergence on Level Sets of I(3)

The second property required for [8, Th. 4.2.23] is the uniform convergence on level sets,
LI(3)(α) :=

{
µ : I(3)(µ) ≤ α

}
, of I(3), that is we must prove that for any α > 0,

lim
j→∞

sup
µ∈L

I(3)
(α)

{
DT,L2

(
Ψmj(µ),Ψ(µ)

)}
= 0. (53)

Note that the fact that for all j ≥ bαc+ 1,

sup
µ∈L

I(3)
(α)

{
DT,L2

(
Ψmj(µ),Ψmj+1(µ)

)}
≤ 2−j. (54)

follows from Lemma 3.11 and this suffices because

DT,L2

(
Ψmj(µ),Ψ(µ)

)
≤

∞∑
k=j

DT,L2

(
Ψmk(µ),Ψmk+1(µ)

)
≤

∞∑
k=j

2−k −→
j→∞

0. (55)

for all µ ∈ LI(3)(α).
Step 3: Rate Function We have thus established the LDP. It remains for us to prove that

the rate function is of the form noted in the theorem, and its unique minimum is given by
µ∗. According to [8, Th. 4.2.23] ,

H(µ) = inf
ζ∈PS(T Z):Ψ(ζ)=µ

{
I(3)(ζ)

}
, (56)

where H(µ) :=∞ if there does not exist ζ ∈ PS(T Z) such that Ψ(ζ) = µ. Since the unique
zero of I(3) is P⊗Z, we can immediately infer that the unique zero of H is Ψ

(
P⊗Z

)
, which

is µ∗. In Section 3.6 we prove that this satisfies the McKean-Vlasov stochastic differential
equation stated in the Theorem.

Remark 3.12. Theorem 4.2.23 of [8] requires Ψ to be defined and measurable in P(T Z), not
only in A. Since A is non empty thanks to Lemma 3.11, measurable as a countable union of
closed sets, we can extend Ψ to a measurable function in P(T Z) by simply setting it to an
arbitrary measure, say P⊗Z, in Ac.
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3.4 Exponential Tightness of (Πn)n∈Z+ on
(
PS(T Z), DT

)
In this section we prove in Lemma 3.15 the exponential tightness of (Πn)n∈Z+ for the topol-
ogy induced by DT on PS(T Z). As pointed out in Remark 3.10 it is necessary to prove
Theorem 2.5.

Lemma 3.13 is crucial for comparing the system with correlations with the uncorrelated
system via Girsanov’s Theorem. It is used in the proof of the exponential tightness of(
Πn
)
n∈Z+ in Lemma 3.15 and is used, as well as Lemma 3.14, several times in the sequel.

Just as for several of the Lemmas below it makes good use of the Discrete Fourier Trans-
form (DFT) of the relevant variables. The corresponding material and notations are pre-
sented in Appendix B. As a general notation, given an In-periodic sequence (βj)j∈In , we note
(β̃p)p∈In its length N DFT defined by

β̃p =
∑
j∈In

βjF−jpN FN = e
2iπ
N with i2 = −1.

Lemma 3.13. For any M > 0, there exists CM > 0 such that

lim
n→∞

1

N
logQn

(
1

N
sup
t∈[0,T ]

∑
j∈In

(
θjt
)2 ≥ CM

)
≤ −M. (57)

Proof. The proof is rather typical of many of the proofs in this paper. It uses some definitions
and results that are given in Appendix B. It follows three steps.
Step 1: Go to the Fourier domain
By Parseval’s Theorem,

1

N

∑
j∈In

(
θjt
)2

=
1

N2

∑
p∈In

∣∣θ̃pt ∣∣2. (58)

Taking Fourier transforms in (29) and using Lemma B.1, we find that

Ṽ p
t = σW̃ p

t + σ

∫ t

0

θ̃psds, (59)

where

θ̃ps = σ−2 Eγµ̂n(Vn)

[
Λs(G)G0

s

∫ s

0

G̃−pr dṼ p
r

]
. (60)

Next we write G0
s = 1

N

∑
q∈In G̃

q
s.

θ̃ps = σ−2Eγµ̂n(Vn)

[
Λs(G)(

1

N

∑
q∈In

G̃q
s)

∫ s

0

G̃−pr dṼ p
r

]
=

1

N
σ−2

∑
q∈In

Eγµ̂n(Vn)

[
Λs(G)G̃q

s

∫ s

0

G̃−pr dṼ p
r

]
.
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According to Corollary B.12 and its proof∑
q∈In

Eγµ̂n(Vn)

[
Λs(G)G̃q

s

∫ s

0

G̃−pr dṼ p
r

]
= Eγµ̂n(Vn)

[
Λs(G)G̃p

s

∫ s

0

G̃−pr dṼ p
r

]
= Eγµ̂n(Vn)

[
Λ̃|p|s (G̃)G̃p

s

∫ s

0

G̃−pr dṼ p
r

]
.

This allows us to rewrite (60) as

θ̃ps = N−1σ−2 Eγµ̂n(Vn)

[
Λ̃|p|s (G̃)G̃p

s

∫ s

0

G̃−pr dṼ p
r

]
. (61)

We substitute (59) into the right hand side of (61) and obtain

θ̃pt =
1

σN

∫ t

0

Eγµ̂n(Vn)[
Λ̃
|p|
t

(
G
)
G̃p
t G̃
−p
s

]
θ̃psds+

1

σN
Eγµ̂n(Vn)

[
Λ̃
|p|
t

(
G
)
G̃p
t

∫ t

0

G̃−ps dW̃ p
s

]
(62)

Step 2: Find an upper bound for the Fourier transformed quantities:
Applying twice the Cauchy-Schwarz inequality to (62),

∣∣θ̃pt ∣∣2 ≤ 2t

σ2N2

∫ t

0

∣∣∣∣Eγµ̂n(Vn)[
Λ̃
|p|
t (G̃)G̃p

t G̃
−p
s

]∣∣∣∣2∣∣θ̃ps∣∣2ds+ 2

σ2N2

∣∣∣∣Eγµ̂n(Vn)

[
Λ̃
|p|
t (G̃)G̃p

t

∫ t

0

G̃−ps dW̃ p
s

]∣∣∣∣2.
By Lemma B.14,∣∣∣∣Eγµ̂n(Vn)[

Λ̃
|p|
t (G̃)G̃p

t G̃
−p
s

]∣∣∣∣2 ≤ (CJ )2
∑
j∈In

f(V j
s )2

∑
k∈In

f(V k
t )2 ≤ N2(CJ )2

and ∣∣∣∣Eγµ̂n(Vn)

[
Λ̃
|p|
t (G̃)G̃p

t

∫ t

0

G̃−ps dW̃ p
s

]∣∣∣∣2 ≤ (CJ )2
∑
j∈In

f(V j
t )2

∑
k∈In

∣∣∣∣ ∫ t

0

f(V k
s )dW̃ p

s

∣∣∣∣2
≤ N(CJ )2

∑
k∈In

∣∣∣∣ ∫ t

0

f(V k
s )dW̃ p

s

∣∣∣∣2.
Applying Parseval’s Theorem to the right hand side of the previous inequality,

∑
p∈In

∣∣∣∣Eγµ̂n(Vn)

[
Λ̃
|p|
t (G̃)G̃p

t

∫ t

0

G̃−ps dW̃ p
s

]∣∣∣∣2 ≤ N2(CJ )2
∑
j,k∈In

(∫ t

0

f(V k
s )dW j

s

)2

.

This means that

1

N2

∑
p∈In

∣∣θ̃pt ∣∣2 ≤ 2σ−2(CJ )2t

∫ t

0

1

N2

∑
p∈In

∣∣θ̃ps∣∣2ds+
2

N2
σ−2(CJ )2

∑
j,k∈In

(∫ t

0

f(V k
s )dW j

s

)2

.
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We thus find through Gronwall’s Inequality that

1

N2

∑
p∈In

∣∣θ̃pt ∣∣2 ≤ 2

σ2N2
(CJ )2 exp

(
2σ−2(CJ )2T 2

)
sup
r∈[0,t]

∑
j,k∈In

(∫ r

0

f(V k
s )dW j

s

)2

.

Step 3: Apply Doob’s submartingale inequality:

Now
∑

j,k∈In

(∫ t
0
f(V k

s )dW j
s

)2

is a submartingale, hence, for any κ > 0,

ζt := exp

(
κ 2σ−2N−1(CJ )2 exp

(
2σ−2(CJ )2T 2

) ∑
j,k∈In

(∫ t

0

f(V k
s )dW j

s

)2)
is also a submartingale. By Doob’s submartingale inequality, for an K > 0,

Qn

(
sup
t∈[0,T ]

1

N2

∑
p∈In

∣∣θ̃pt ∣∣2 ≥ K

)
= Qn

(
sup
t∈[0,T ]

exp

(
κ

N

∑
p∈In

∣∣θ̃pt ∣∣2) ≥ exp
(
κNK

))
≤ Qn

(
sup
t∈[0,T ]

ζt ≥ exp
(
κNK

))
≤ exp

(
− κNK

)
E
[
ζT
]
.

Now for κ small enough, by Lemma A.1 and the boundedness of f there exists a constant
C such that E

[
ζT
]
≤ exp

(
NC

)
for all N ∈ Z+. We thus find that

Qn

(
1

N
sup
t∈[0,T ]

∑
j∈In

(
θjt
)2 ≥ K

)
=Qn

(
1

N2
sup
t∈[0,T ]

∑
p∈In

∣∣θ̃pt ∣∣2 ≥ K

)
≤ exp

(
N(C − κK)

)
,

from which we can conclude the Lemma by taking K to be sufficiently large.

We have a similar result for θm,j defined in (37).

Lemma 3.14. For any M > 0, there exists CM > 0 such that

lim
n→∞

1

N
logQn

(
1

N
sup
t∈[0,T ]

∑
j∈In

(
θm,jt

)2 ≥ CM

)
≤ −M. (63)

Proof. The proof is similar to that of Lemma 3.13 and is left to the reader.

Note that the DFT Ṽ m,p of the approximation V m,j satisfies the following system of
SDEs, analog to (59):

Ṽ m,p
t = σW̃ p

t + σ

∫ t

0

θ̃m,ps ds (64)

As pointed out in the introduction to Section 3.3 the exponential tightness is a key step
in proving the LDP for Πn.
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Lemma 3.15. The family of measures
(
Πn
)
n∈Z+ is exponentially tight with respect to the

topology on PS(T Z) induced by DT . That is, for any M > 0, there exists a compact set
KM ⊂ PS(T Z) such that

lim
n→∞

1

N
log Πn

(
Kc
M

)
≤ −M.

Proof. Consider the event Kn,M defined by

Kn,M =

{
1

N
sup
t∈[0,T ]

∑
j∈In

(
θjt
)2 ≥ CM

}
(65)

By Lemma 3.13, we can find CM such that

lim
n→∞

1

N
logQn

(
Kn,M

)
≤ −M. (66)

For any compact set KM of PS(T Z), we have Πn
(
Kc
M

)
= Qn (µ̂−1

n (Kc
M)) so that, by (66)

lim
n→∞

1

N
log Πn

(
Kc
M

)
≤ max

{
lim
n→∞

1

N
logQn

(
µ̂−1
n (Kc

M) ∩ Kcn,M
)
, lim
n→∞

1

N
logQn

(
Kn,M

)}
≤ max

{
lim
n→∞

1

N
logQn

(
µ̂−1
n (Kc

M) ∩ Kcn,M
)
, −M

}
,

so that it suffices for us to prove that

lim
n→∞

1

N
logQn

(
µ̂−1
n (Kc

M) ∩ Kcn,M
)
≤ −M. (67)

By Proposition 3.4, and using the Cauchy-Schwarz Inequality,

Qn
(
µ̂−1
n (Kc

M) ∩ Kcn,M
)

=

∫
µ̂−1
n (Kc

M )∩Kcn,M
exp

(∑
j∈In

∫ T

0

θjsdB
j
s −

1

2

∑
j∈In

∫ T

0

(
θjs
)2
ds

)
dP⊗N(B)

≤
{∫

µ̂−1
n (Kc

M )∩Kcn,M
exp

(
2
∑
j∈In

∫ T

0

θjsdB
j
s − 2

∑
j∈In

∫ T

0

(
θjs
)2
ds

)
dP⊗N(B)

} 1
2

×
{∫

µ̂−1
n (Kc

M )∩Kcn,M
exp

(∑
j∈In

∫ T

0

(
θjs
)2
ds

)
dP⊗N(B)

} 1
2

.

Now using the properties of a supermartingale,∫
µ̂−1
n (Kc

M )∩Kcn,M
exp

(
2
∑
j∈In

∫ T

0

θjsdB
j
s − 2

∑
j∈In

∫ T

0

(
θjs
)2
ds

)
dP⊗N(B)

≤
∫
T N

exp

(
2
∑
j∈In

∫ T

0

θjsdB
j
s − 2

∑
j∈In

∫ T

0

(
θjs
)2
ds

)
dP⊗N(B) ≤ 1.
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Using the definition of Kn,M in (65), and since Πn
0 = P⊗N ◦ µ̂−1

n∫
µ̂−1
n (Kc

M )∩Kcn,M
exp

(∑
j∈In

∫ T

0

(
θjs
)2
ds

)
dP⊗N(B) ≤ exp

(
NTCM

)
P⊗N

(
µ̂−1
n (Kc

M)
)

= exp
(
NTCM

)
Πn

0

(
Kc
M

)
.

Now
(
Πn

0

)
n∈Z+ is exponentially tight (a direct consequence of Theorem 2.6), which means

that we can choose KM to be such that

lim
n→∞

1

N
log Πn

0

(
Kc
M

)
≤ −

(
2M + TCM

)
,

so that we can conclude (67) as required.

3.5 Exponentially Equivalent Approximations using Ψm

The following Lemma, which is central in the proof of Theorem 2.5, is the main result of this
section. Its proof is long and technical and uses four auxiliary Lemmas, Lemmas 3.20-3.23
whose proofs are found in Appendix D.

Lemma 3.16. For any δ > 0,

lim
m→∞

lim
n→∞

1

N
logQn (DT,L2 (Ψm (µ̂n(σWn)) , µ̂n(Vn)) > δ) = −∞. (68)

Proof. The proof uses the following ideas.
By Lemma 3.8, Ψm

(
µ̂n(σWn)

)
= µ̂n(V m

n ). By Lemma 3.17, we can find an upperbound of
DT,L2(µ̂n(V m

n ), µ̂n(Vn)) using the L2 distance between V m
n and Vn, so that the proof boils

down to comparing the solution Vn to the system of equations (29) and (30) to the solution
V m
n to the approximating system of equations (37) constructed in Section 3.2.1 by an L2

distance. By equations (37) and (29) this is equivalent to comparing the L2 distance between
θm and θ. As already mentioned, it is technically easier to work in the Fourier domain with
the L2 distance between θ̃m,p and θ̃p, p ∈ In, the Fourier transforms of (θm,j)j∈In and (θj)j∈In .
This distance naturally brings in the operators L̄tµ̂n(Vn) and L̄tµ̂n(Vmn ) defined in Appendix C,
in effect their Fourier transforms.

The following Lemma (proved page 32) relates the Wasserstein distance DT,L2 between
two empirical measures associated with two elements of T N to the L2 distance between these
elements.

Lemma 3.17. For all Xn, Yn ∈ T N we have

DT,L2(µ̂n(Xn), µ̂n(Yn))2 ≤ b2

N

∑
k∈In

∥∥Xk − Y k
∥∥2

L2

where b is defined by (7).
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We now follow our plan for the proof of Lemma 3.16.
By Lemmas 3.8 and 3.17 we write

DT,L2 (Ψm (µ̂n(σWn)) , µ̂n(Vn))2 ≤ b2

N

∑
j∈In

∥∥V m,j − V j
∥∥2

L2 .

By Parseval’s Theorem,

1

N

∑
j∈In

∥∥V m,j − V j
∥∥2

L2 =
1

N

∑
j∈In

∫ T

0

∣∣V m,j
t − V j

t

∣∣2dt =
1

N2

∑
p∈In

∫ T

0

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2dt,
In order to prove (68) it therefore suffices for us to prove that for any arbitrary M, δ > 0,
which are now fixed throughout the rest of this proof,

lim
m→∞

lim
n→∞

1

N
logQn

(
sup
t∈[0,T ]

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 > δ2/T

)
≤ −M. (69)

Using the expression in (59), it follows from the Cauchy-Schwarz inequality that for any
t ∈ [0, T ],

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 ≤ tσ2

N2

∑
p∈In

∫ t

0

∣∣θ̃ps − θ̃m,ps

∣∣2ds ≤ Tσ2

N2

∑
p∈In

∫ t

0

∣∣θ̃ps − θ̃m,ps

∣∣2ds. (70)

In order to continue our plan we introduce the discrete time approximation mθ̃p
s(m) of θ̃ps

mθ̃p
s(m) =

1

Nσ2
Eγµ̂n(Vn)

[
Λ̃
|p|
s(m)(G̃)G̃p

s(m)

∫ s(m)

0

G̃−p
r(m)dṼ

p
r

]
. (71)

We obtain in the following Lemma a characterization of mθ̃p
s(m)

Lemma 3.18. Assume s(m) = vηm, v = 0, · · · ,m. We have

mθ̃pvηm = σ−2
(

¯̃Lpµ̂n(Vn)δṼ
p
)

(vηm),

where ¯̃Lpµ̂n(Vn) is the (v + 1)× (v + 1) matrix (L̃pµ̂n(Vn)(wηm, uηm))w, u=0,··· ,v defined by

L̃pµ̂n(Vn)(vηm, wηm) = N−1Eγµ̂n(Vn)
[
Λ̃|p|vηm(G̃)G̃p

vηmG̃
−p
wηm

]
,

and δṼ p is the v + 1-dimensional vector

δṼ p
w =

{
0 w = 0

Ṽ p
wηm − Ṽ

p
(w−1)ηm

w = 1, · · · , v (72)

25



Proof. We give a short proof. Since s(m) = vηm, v = 0, · · · ,m, and using Remark 3.3 and
the notations of Appendix C

mθ̃pvηm = σ−2N−1Eγµ̂n(Vn)

[
Λ̃|p|vηm(G̃)G̃p

vηm

∫ vηm

0

G̃−p
r(m)dṼ

p
r

]
= σ−2

v−1∑
w=0

N−1Eγµ̂n(Vn)
[
Λ̃|p|vηm(G̃)G̃p

vηmG̃
−p
wηm

]
(Ṽ p

(w+1)ηm
− Ṽ p

wηm)

= σ−2

v−1∑
w=0

L̃pµ̂n(Vn)(vηm, wηm)(Ṽ p
(w+1)ηm

− Ṽ p
wηm)

= σ−2
(

¯̃Lpµ̂n(Vn)δṼ
p
)

(vηm),

where ¯̃Lpµ̂n(Vn) is the (v+1)×(v+1) matrix (L̃pµ̂n(Vn)(wηm, uηm))w, u=0,··· ,v defined in Remark 3.3
and Appendix C.2.

The autocorrelation function Lµ̂n(Vn) (resp. Lµ̂n(Vmn )) involved in the sequence (V j)j∈In
(resp. (V m,j)j∈In) and hence in the sequence (θj)j∈In (resp. (θm,j)j∈In) arises from the
values of the autocorrelation function RJ , defined in (3), on a grid In × In (resp. Iqm × In).
Since we are working in the discrete Fourier domain, it is natural, as explained in Appendix
C.2, and in fact necessary, to consider the following four operators (in the discrete time

setting, matrixes) in order to compare θ̃p and θ̃m,p. In detail, ¯̃Lpµ̂n(Vn), (resp. ¯̃Lpµ̂n(Vmn )),

p ∈ In is obtained by taking the length N DFT of the length N sequence (Liµ̂n(Vn))i∈In (resp.

(Liµ̂n(Vmn ))i∈In). Similarly, ¯̃Lqm,pµ̂n(Vn), (resp. ¯̃Lqm,pµ̂n(Vmn )), p ∈ In is obtained by taking the length N

DFT of the length Qm sequence (Liµ̂n(Vn))i∈Iqm (resp. (Liµ̂n(Vmn ))i∈Iqm ) padded with N − Qm

zeros.
We then use the following decomposition∣∣∣θ̃ps − θ̃m,ps

∣∣∣ ≤ ∣∣∣θ̃ps − mθ̃pvηm

∣∣∣+ σ−2
∣∣∣(( ¯̃Lpµ̂n(Vn) −

¯̃Lqm,pµ̂n(Vn)

)
δṼ p

)
(vηm)

∣∣∣+
σ−2

∣∣∣(( ¯̃Lqm,pµ̂n(Vn) −
¯̃Lpµ̂n(Vmn )

)
δṼ p

)
(vηm)

∣∣∣+ σ−2
∣∣∣( ¯̃Lpµ̂n(Vmn )

(
δṼ p − δṼ m,p

))
(vηm)

∣∣∣+∣∣∣σ−2
(

¯̃Lpµ̂n(Vmn )δṼ
m,p
)

(vηm)− θ̃m,ps

∣∣∣ ,
Each term on the right hand side performs a specific comparison:

First term: Allows to compare θ̃ps and its time discretized version mθ̃p
s(m) which is equal,

thanks to Lemma 3.18, to σ−2
(

¯̃Lpµ̂n(Vn)δṼ
p
)

(vηm).

Second term: Allows to compare the operator ¯̃Lpµ̂n(Vn) with its space/correlation truncated

and Fourier interpolated version ¯̃Lqm,pµ̂n(Vn).
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Third term: Allows to compare the operator ¯̃Lqm,pµ̂n(Vn) with the operator ¯̃Lpµ̂n(Vmn ) correspond-
ing to the approximated solution.

Fourth term: Allows to compare the time discretized versions of the Ṽn and Ṽ m
n processes.

Fifth term Allows to compare the space/correlation truncated and Fourier interpolated

opertor ¯̃Lqm,pµ̂n(Vmn ) with its Fourier interpolation θ̃m,p.

By slightly changing the order of the terms we write, remember that s(m) = vηm,

1

N2

∑
p∈In

∣∣∣θ̃ps − θ̃m,ps

∣∣∣2 ≤ 5

N2

∑
p∈In

∣∣∣θ̃ps − mθ̃pvηm

∣∣∣2 }
α1
s

+
5

N2σ4

∑
p∈In

∣∣∣(( ¯̃Lpµ̂n(Vn) −
¯̃Lqm,pµ̂n(Vn)

)
δṼ p

)
(vηm)

∣∣∣2 }
α2
vηm

+
5

N2

∑
p∈In

∣∣∣σ−2
(

¯̃Lpµ̂n(Vmn )δṼ
m,p
)

(vηm)− θ̃m,ps

∣∣∣2 }
α3
vηm

+
5

N2σ4

∑
p∈In

∣∣∣(( ¯̃Lqm,pµ̂n(Vn) −
¯̃Lpµ̂n(Vmn )

)
δṼ p

)
(vηm)

∣∣∣2 }
α4
vηm

+
5

N2σ4

∑
p∈In

∣∣∣( ¯̃Lpµ̂n(Vmn )

(
δṼ p − δṼ m,p

))
(vηm)

∣∣∣2 }
α5
vηm . (73)

Our first action is to remove the term α5 through the use of Gronwall’s Lemma.
Since, by Proposition C.8, |L̃pµ̂n(Vmn )(vηm, wηm)| is uniformly bounded by some constant

K > 0 independent of w, v, p, qm, n, V
m
n , and according to equations (59), (64) and (72)

α5
vηm ≤

5K2

N2σ4

∑
p∈In

(
v∑

w=1

|δṼ p
w − δṼ m,p

w |

)2

=
5K2

N2σ2

∑
p∈In

(
v−1∑
w=0

∣∣∣∣∣
∫ (w+1)ηm

wηm

(θ̃pr − θ̃m,pr ) dr

∣∣∣∣∣
)2

≤ 5vηmK
2

N2σ2

∑
p∈In

∫ vηm

0

∣∣∣θ̃pr − θ̃m,pr

∣∣∣2 dr ≤ 5TK2

N2σ2

∑
p∈In

∫ s

0

∣∣∣θ̃pr − θ̃m,pr

∣∣∣2 dr
Inserting this uppper bound for α5

vηm in the right hand side of (73) and applying Gronwall’s
Lemma we obtain

1

N2

∑
p∈In

∣∣∣θ̃ps − θ̃m,ps

∣∣∣2 ≤ C sup
r∈[0,s]

{
α1
r +

4∑
i=2

αir(m)

}
,

with
C = exp

(
5T 2σ−2K2

)
. (74)
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Hence, by (70)

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 ≤ TCσ2

∫ t

0

sup
r∈[0,s]

{
α1
r +

4∑
i=2

αir(m)

}
ds

≤ TCσ2

(∫ t

0

sup
r∈[0,s]

α1
r ds+

4∑
i=2

∫ t

0

sup
r∈[0,s]

αir(m) ds

)
. (75)

The next step in the proof is the definition of the following stopping time. For c > 0 and
ε ≤ exp

(
− cT

)
δ2/T , define

τ(ε, c) = inf

{
t ∈ [0, T ] :

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 = ε exp
(
tc
)}
. (76)

Remark 3.19. The random time τ(ε, c) is the time at which the L2 distance between the N
trajectories Vn and V m

n differ on average by more than exp (−c(T − t)) δ2/T (≤ δ2/T ).

The crucial idea of the proof is to upper bound the left hand side of (69) by

lim
n→∞

1

N
log

(
m max

u=0,··· ,m−1
Qn ({τ(ε, c) ∈ [uηm, (u+ 1)ηm]})

)
,

see (78) below.
The proof proceeds iteratively through the time steps: we show that if τ(ε, c) ≥ uηm,

for u = 0, · · · ,m − 1 then with very high probability τ(ε, c) ≥ (u + 1)ηm. We show in the
proof of Lemma 3.23 that there exists c > 0 such that for any ε < δ2 exp(−cT )/T , for all m
sufficiently large, for all 0 ≤ u < m,

lim
n→∞

1

N
logQn

(
τ(ε, c) ∈

[
uηm, (u+ 1)ηm]

)
≤ −M. (77)

Indeed this suffices for proving Lemma 3.16. We have

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 =
δ2

T
=⇒ τ(ε, c) ≤ t.

So {
sup
t∈[0,T ]

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 ≥ δ2/T

}
⊂ {τ(ε, c) ≤ T} ,

and we can conclude that

Qn

({
sup
t∈[0,T ]

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 > δ2/T

})
≤

m−1∑
u=0

Qn ({τ(ε, c) ∈ [uηm, (u+ 1)ηm]}) .
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This commands that

lim
n→∞

1

N
logQn

(
sup
t∈[0,T ]

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 > δ2/T

)
≤ lim

n→∞

1

N
log

(
m max

u=0,··· ,m−1
Qn ({τ(ε, c) ∈ [uηm, (u+ 1)ηm]})

)
≤ −M, (78)

by (77), so that we may conclude that (69) holds.
It remains to prove (77) which requires the four technical Lemma 3.20 to 3.23 below.

Proof of (77): Fix ε < δ2 exp
(
− cT

)
/T . We first establish that

Qn

(
τ(ε, c) ∈

[
uηm, (u+ 1)ηm]

)
≤ Qn

( 3⋃
j=1

(Bj)c
u⋃
v=0

(B4
v)
c and τ(ε, c) ≥ uηm

)
, (79)

for the following events

Bj =

{
sup
s∈[0,T ]

αj
s(m) ≤

ε

3T 2Cσ2

}
, j = 1, 2, 3 (80)

B4
v =

{
α4
vηm ≤

εc

TCσ2
exp (vηmc)

}
, v = 0, · · · , u, (81)

the constant C being defined in (74). Taking the complements of the events, (79) is equivalent
to

Qn

( 3⋂
j=1

Bj

u⋂
v=0

B4
v or τ(ε, c) < uηm

)
≤ Qn

(
τ(ε, c) /∈

[
uηm, (u+ 1)ηm)

)
.

Now, using the equality P(A ∪B) = P(A ∩Bc) + P(B),

Qn

( 3⋂
j=1

Bj

u⋂
v=0

B4
v or τ(ε, c) < uηm

)
=

Qn

( 3⋂
j=1

Bj

u⋂
v=0

B4
v and τ(ε, c) ≥ uηm

)
+Qn

(
τ(ε, c) < uηm

)
, (82)

and

Qn

(
τ(ε, c) /∈

[
uηm, (u+ 1)ηm)

)
= Qn

(
τ(ε, c) < uηm

)
+Qn

(
τ(ε, c) ≥ (u+ 1)ηm

)
.

It therefore suffices for us to prove that

Qn

( 3⋂
j=1

Bj

u⋂
v=0

B4
v and τ(ε, c) ≥ uηm

)
≤ Qn

(
τ(ε, c) ≥ (u+ 1)ηm

)
. (83)

29



Indeed, if the above conditions {Bj}, j = 1, 2, 3 it follows from (75) and (80), that for
t ∈ [uηm, (u+ 1)ηm], i.e. for t(m) = uηm,

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 ≤ TCσ2

(∫ t

0

sup
r∈[0,s]

α1
r ds+

3∑
j=2

∫ t

0

sup
r∈[0,s]

αj
r(m) ds+

∫ t

0

sup
r∈[0,s]

α4
r(m) ds

)

≤ ε+ TCσ2

∫ t

0

sup
r∈[0,s]

α4
r(m) ds. (84)

Because the conditions (81), {B4
v}, v = 0, · · · , u, are all satisfied we can write

∫ t

0

sup
r∈[0,s]

α4
r(m) ds =

u−1∑
v=0

∫ (v+1)ηm

vηm

sup
r∈[0,s]

α4
r(m) ds+

∫ t

uηm

sup
r∈[0,s]

α4
r(m) ds =

ηm

u−1∑
v=0

sup
r∈[0,vηm]

α4
r(m) +

∫ t

uηm

sup
r∈[0,s]

α4
r(m) ds ≤

εcηm
TCσ2

u−1∑
v=0

exp cvηm +

∫ t

uηm

sup
r∈[0,s]

α4
r(m) ds =

εcηm
TCσ2

u−1∑
v=0

exp cvηm+

∫ t

uηm

sup
r∈[0,uηm]

α4
r(m) ds ≤

εcηm
TCσ2

u−1∑
v=0

exp cvηm+(t−uηm)
εc

TCσ2
exp cuηm ≤

εcηm
TCσ2

u∑
v=0

exp cvηm =
εcηm
TCσ2

exp c(u+ 1)ηm − 1

exp cηm − 1
.

Since x ≤ expx− 1 for x ≥ 0, it follows that∫ t

0

sup
r∈[0,s]

α4
r(m) ds ≤

ε

TCσ2
(exp c(u+ 1)ηm − 1) ,

and, because of (84),

1

N2

∑
p∈In

∣∣Ṽ m,p
t − Ṽ p

t

∣∣2 ≤ ε exp c(u+ 1)ηm. (85)

for t ∈ [uηm, (u+ 1)ηm].
This means that if conditions (80)-(81) are satisfied, and τ(ε, c) ≥ uηm, then τ(ε, c) ≥

(u+ 1)ηm, and we have established (83).
Now

Qn

( 3⋃
j=1

(Bj)c
u⋃
v=0

(B4
v)
c and τ(ε, c) ≥ uηm

)
≤

3∑
j=1

Qn

(
(Bj)c

)
+

u∑
v=0

Qn

(
(B4

v)
c and τ(ε, c) ≥ uηm

)
. (86)

We use the following four Lemmas
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Lemma 3.20. For any M > 0, for all m ∈ N sufficiently large,

lim
n→∞

1

N
logQn

(
sup
s∈[0,T ]

α1
s ≥

ε

3TCσ2

)
≤ −M.

Lemma 3.21. For any M > 0, for all m ∈ N sufficiently large,

lim
n→∞

1

N
logQn

(
sup
s∈[0,T ]

α2
s(m) ≥

ε

3TCσ2

)
≤ −M, (87)

if the function ψ(n, qm) : N→ R
+ defined in the proof is such that limn,m→∞Nmψ(n, qm) =

0.

Lemma 3.22. For any M > 0, for all m ∈ N sufficiently large,

lim
n→∞

1

N
logQn

(
sup
s∈[0,T ]

α3
s(m) ≥

ε

3TCσ2

)
≤ −M.

Lemma 3.23. For any M > 0, there exists a constant c such that for all m ∈ N sufficiently
large, all 0 ≤ u ≤ m and all 0 ≤ v ≤ u and all ε ≤ exp

(
− cT

)
δ2/T ,

lim
n→∞

1

N
logQn

(
α4
vηm ≥

εc

TCσ2
exp (vηmc) and τ(ε, c) ≥ uηm

)
≤ −M.

It follows from Lemmas 3.20 to 3.22 that

lim
n→∞

1

N
logQn

(
(Bj)c

)
≤ −M, j = 1, 2, 3

and from Lemma 3.23 that

lim
n→∞

1

N
logQn

(
(B4

v)
c and τ(ε, c) ≥ uηm

)
≤ −M,

for all 0 ≤ v ≤ u, for m sufficiently large. This means that

lim
n→∞

1

N
logQn

( 3⋃
j=1

(Bj)c
u⋃
v=0

(B4
v)
c and τ(ε, c) ≥ uηm

)

≤ lim
n→∞

1

N
log

(
3∑
j=1

Qn

(
(Bj)c

)
+

u∑
v=0

Qn

(
(B4

v)
c and τ(ε, c) ≥ uηm

))

≤ lim
n→∞

1

N
log(u+ 4) max

j,v

{
Qn

(
(Bj)c

)
, Qn

(
(B4

v)
c and τ(ε, c) ≥ uηm

)}
= lim

n→∞
max
j,v

{
1

N
logQn

(
(Bj)c

)
,

1

N
logQn

(
(B4

v)
c and τ(ε, c) ≥ uηm

)}
≤ −M.

We can therefore conclude (77), and this finishes the proof of Lemma 3.16.
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Proof of Lemma 3.17. By (46) we write

DT,L2(µ̂n(Xn), µ̂n(Yn)) ≤
∑
i∈Z

bi

∫ ∥∥f(ui)− f(vi)
∥∥
L2 dξ(u, v),

for all stationary couplings ξ between µ̂n(Xn) and µ̂n(Yn). Because of the stationarity of ξ
and the Lipschitz continuity of f we have

DT,L2(µ̂n(Xn), µ̂n(Yn)) ≤ b

∫ ∥∥f(u0)− f(v0)
∥∥
L2 dξ(u, v) ≤

b

∫ ∥∥u0 − v0
∥∥
L2 dξ(u, v) ≤ b

(∫ ∥∥u0 − v0
∥∥2

L2 dξ(u, v)

)1/2

,

where b is defined by (7).
Consider the set Sn of permutations s of the set In. If Xn = (X−n, · · · , Xn), we note

s(Xn) the element (Xs(−n), · · · , Xs(n)). The knowledge of µ̂n(Xn) does not imply that of Xn,
in effect it implies the knowledge of all s(Xn)s without knowing which permutation is the
correct one. Choose one such element, say s0(Xn). Similarly choose s1(Yn). There exists a
family of couplings1 ξs such that∫ ∥∥u0 − v0

∥∥2

L2 dξ
s(u, v) =

1

N

∑
k∈In

∥∥Xs0(k) − Y s(s1(k))
∥∥2

L2 ,

from which we obtain, for s = s0s
−1
1

DT,L2(µ̂n(Xn), µ̂n(Yn))2 ≤ b2

N

∑
k∈In

∥∥Xk − Y k
∥∥2

L2 ,

which is the announced result.

The proofs of Lemma 3.20-3.23 are found in Appendix D.

3.6 Characterization of the Limiting Process

We prove in this Section that the limit equations are given by (14), i.e. Theorem 2.5.iv. This
is achieved by first showing that the solution to (14), without the condition that µ∗ is the
law of Z, is unique and has a closed form expression as a function of the Brownian motions
W j. This is the content of the following Lemma whose proof can be found in Appendix E.
This proof is based on an adaptation of the theory of Volterra equations of the second type
[26] to our, stochastic, framework.

1For example ξs(u, v) = 1
N

∑
i∈In

δSis0(Xn)(u)δSis(s1(Yn))(v).
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Lemma 3.24. Let µ ∈ PS(T Z). The system of equations (14)

V j
t = σW j

t + σ

∫ t

0

θjsds

θjt = σ−2
∑
i∈Z

∫ t

0

Li−jµ (t, s)dV i
s .

has a unique solution given by

V j
t = σW j

t +
∑
i∈Z

∫ t

0

(∫ s

0

Liµ(s, u) dW i+j
u

)
ds+

σ−1
∑
i,`∈Z

∫ t

0

(∫ s

0

M i
µ(s, u)

(∫ u

0

L`−iµ (u, v) dW `+j
v

)
du

)
ds, (88)

where Mk
µ is defined in the proof and satisfies

sup
s,u∈[0,t]

∑
k

∣∣Mk
µ(s, u)

∣∣ <∞.
Note Qm,n the law of the solution to (31). Lemma 3.16 indicates that Πm,n = Qm,n ◦

µ̂n(V m
n ) satisfies an LDP with the same good rate function H as Πn.

Lemma 3.25. The limit law of Qm,n when m, n → ∞ is µ∗, the unique zero of the rate
function H. Moreover, for all k ∈ In, t, s ∈ [0, T ]

lim
m,n→∞

∫
T N

Lkµ̂n(Vmn )(t, s) dQ
m,n(V m

n ) = Lkµ∗(t, s).

Proof. We know that H has a unique zero, noted µ∗. This implies that Πm,n converges
weakly to δµ∗ and therefore, for all F ∈ Cb(P(T Z)),

lim
m,n→∞

∫
P(T Z)

F (µ) dΠm,n(µ) = F (µ∗).

From the relation Πm,n = Qm,n ◦ µ̂n(V m
n )−1 we infer that

lim
m,n→∞

∫
T N

F (µ̂n(V m
n )) dQm,n(V m

n ) = F (µ∗).

Let us choose a function f ∈ Cb(T Z) and define F : P(T Z)→ R by

F (µ) =

∫
T Z
f(V ) dµ(V ),
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so that we have

lim
m,n→∞

∫
T N

∫
T Z
f(V ) dµ̂n(V m

n )(V ) dQm,n(V m
n ) =

lim
m,n→∞

1

N

∑
i∈In

∫
T N

f(SiV m
n )dQm,n(V m

n ) =

∫
T Z
f(V ) dµ∗(V )

We note that Qm,n is invariant under a uniform shift of the indexes, i.e. satisfies

Qm,n ◦ Si = Qm,n

for all i ∈ In, so that

1

N

∑
i∈In

∫
T N

f(SiV m
n )dQm,n(V m

n ) =

∫
T N

f(V m
n ) dQm,n(V m

n ),

and therefore

lim
m,n→∞

∫
T N

f(V m
n ) dQm,n(V m

n ) =

∫
T Z
f(V ) dµ∗(V ).

Since this is true for all f ∈ Cb(T Z) we have proved that the limiting law of Qm,n is µ∗.
Next consider the function F : P(T Z)→ R

F (µ) = Lkµ(t, s)

for a given k ∈ In and t, s ∈ [0, T ]. We have

lim
m,n→∞

∫
T N

Lkµ̂n(Vmn )(t, s) dQ
m,n(V m

n ) = Lkµ∗(t, s),

which also reads
lim

m,n→∞
E
[
Lkµ̂n(Vmn )(t, s)− Lkµ∗(t, s)

]
= 0.

We now prove Theorem 2.5.iii

Theorem 3.26. The equations describing the unique 0, µ∗, of the rate function H are (14).

Proof. We prove that for all n ≥ 0

lim
m,n→∞

E

[
sup
s∈[0,t]

∣∣θjs − θm,js

∣∣2] = 0.

Indeed, as shown below, this is sufficient to prove that

lim
m,n→∞

E

[
sup
s∈[0,t]

∣∣V j
s − V m,j

s

∣∣] = 0.
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We recall that the equations (37) satisfied by V m are, for j ∈ In,

V m,j
t = σW j

t + σ

∫ t

0

θm,js ds

θm,jt = σ−2
∑
i∈Iqm

Eγ̄
µ̂n(Vmn )
t

[
Gm,0

t(m)

∫ t(m)

0

Gm,i

s(m)dV
m,i+j
s

]

= σ−2
∑
i∈Iqm

∫ t(m)

0

Liµ̂n(Vmn )(t
(m), s(m)) dV m,i+j

s .

We also have, for j ∈ Z.

θjt = σ−2
∑
i∈Z

∫ t

0

Liµ∗(t, s)dV
i+j
s .

Write

θjt − θ
m,j
t =σ−2

∑
i∈Iqm

∫ t

0

(Liµ∗(t, s)− L
i
µ∗(t

(m), s(m))) dV i+j
s

}
αj,1t

+ σ−2
∑
i∈Iqm

∫ t

t(m)

Liµ∗(t
(m), s(m)) dV i+j

s

}
αj,2t

+ σ−2
∑
i∈Iqm

∫ t(m)

0

(
Liµ∗(t

(m), s(m))− Liµ̂n(Vmn )(t
(m), s(m))

)
dV i+j

s

}
αj,3t

+ σ−2
∑

i∈Z/Iqm

∫ t

0

Liµ∗(t, s) dV
i+j
s

}
αj,4t

+ σ−2
∑
i∈Iqm

∫ t(m)

0

Liµ̂n(Vmn )(t
(m), s(m))(θi+js − θm,i+js ) ds,

so that we have

θjt − θ
m,j
t =

4∑
k=1

αj,kt + σ−2
∑
i∈Iqm

∫ t(m)

0

Liµ̂n(Vmn )(t
(m), s(m))(θi+js − θm,i+js ) ds.

To simplify notations further we write Lin(t(m), s(m)) for Liµ̂n(Vmn )(t
(m), s(m)) since there is no

ambiguity, and define
Φj
t := θjt − θ

m,j
t j ∈ In t ∈ [0, T ].

The previous equation writes

Φj
t =

4∑
k=1

αj,kt + σ−2
∑
i∈Iqm

∫ t(m)

0

Lin(t(m), s(m))Φi+j
s ds (89)

This is a Volterra equation of the second type [26]. We solve it for Φ as a function of the αs
and use the following Lemma whose proof can be found in Appendix F.
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Lemma 3.27. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
max

k=1,2,3,4
sup
s∈[0,t]

∣∣αj,ks ∣∣2
]
≤ Cε

for some positive constant C independent of j.

Since equation (89) is affine we solve it for each αk,j, k = 1, 2, 3, 4 and add the four
solutions. In what follows we thus drop the k index and solve

Φj
t = αjt + σ−2

∑
k∈Iqm

∫ t(m)

0

Lkn(t(m), s(m))Φk+j
s ds.

We take continuous Fourier transforms of both sides to obtain

Φ̃t(ϕ) = α̃t(ϕ) + σ−2

∫ t(m)

0

L̃∗n(ϕ)(t(m), s(m))Φ̃s(ϕ) ds,

where ∗ indicates complex conjugate and, for example

Φ̃t(ϕ) =
∑
j∈In

Φj
te
−ijϕ, ϕ ∈ [−π, π[,

and, as explained page 26, the Fourier transform of Lj is given by:

L̃n(ϕ)(t(m), s(m)) =
∑
j∈In

1Iqm (j)Ljn(t(m), s(m))e−ijϕ, ϕ ∈ [−π, π[.

We use standard results on Volterra equations [26] to write

Φ̃t(ϕ) = α̃t(ϕ) + λ

∫ t(m)

0

H̃(ϕ)(t(m), s(m), λ)α̃s(ϕ) ds, (90)

where we have noted λ = σ−2, the “resolvent kernel” H̃(ϕ)(t, s, λ) is given by the series of
iterated kernels

H̃(ϕ)(t(m), s(m), λ) =
∞∑
`=0

λ`L̃∗n,`+1(ϕ)(t(m), s(m)), (91)

and

L̃∗n,`+1(ϕ)(t(m), s(m)) =

∫ t(m)

0

L̃∗n(ϕ)(t(m), u(m))L̃∗n,`(ϕ)(u(m), s(m)) du.

The convergence of the series (91) is guaranteed by the fact that the two functions

An(ϕ, t)2 =

∫ T

0

∣∣∣L̃n(ϕ)(t, s)
∣∣∣2 ds and Bn(ϕ, s)2 =

∫ T

0

∣∣∣L̃n(ϕ)(t, s)
∣∣∣2 dt
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are upperbounded by T 2a2b2 independently of n, thanks to Proposition C.8. The theory of
Volterra equations then guarantees that

H̃(ϕ)(t(m), s(m), λ) ≤ C

for some positive constant C independent of n, m.
Equation (90) then implies that∣∣∣Φ̃t(ϕ)

∣∣∣2 ≤ 2 |α̃t(ϕ)|2 + 2λ2C2

∫ t

0

|α̃s(ϕ)|2 ds.

By Parseval’s Theorem∑
j∈In

∣∣Φj
t

∣∣2 ≤ 2
∑
j∈In

∣∣αjt ∣∣2 + 2λ2C2

∫ t

0

∑
j∈In

∣∣αjs∣∣2 ds.
Taking the expected value of both sides and using the spatial stationarity of (Φj

t)j∈In and
(αjt )j∈In we have for any j ∈ In

E
[∣∣Φj

t

∣∣2] ≤ 2E
[∣∣αjt ∣∣2]+ 2λ2C2

∫ t

0

E
[∣∣αjs∣∣2] ds.

Since by Lemma 3.27

E

[
max

k=1,2,3,4
sup
s∈[0,t]

∣∣αj,ks ∣∣2
]
→ 0,

we conclude that

lim
m,n→∞

E

[
sup
s∈[0,t]

∣∣θjs − θm,js

∣∣2] = 0,

and therefore

sup
s∈[0,t]

∣∣V j
s − V m,j

s

∣∣ ≤ ∫ t

0

sup
ρ∈[0,s]

∣∣θjρ − θm,jρ

∣∣ ds ≤ √t (∫ t

0

sup
ρ∈[0,s]

(
θjρ − θm,jρ

)2
ds

)1/2

,

and by Cauchy-Schwarz again

E

[
sup
s∈[0,t]

∣∣V j
s − V m,j

s

∣∣] ≤√t (E[∫ t

0

sup
ρ∈[0,s]

(
θjρ − θm,jρ

)2
ds

])1/2

=
√
t

(∫ t

0

E

[
sup
ρ∈[0,s]

(
θjρ − θm,jρ

)2

]
ds

)1/2

.

We conclude that

lim
m,n→∞

E

[
sup
s∈[0,t]

∣∣V j
s − V m,j

s

∣∣] = 0

for all j ∈ Z and t ∈ [0, T ].
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A A martingale Expectation Inequality

We recall the result used in [1]:

Lemma A.1. Consider B−n, · · · , Bn N independent Brownian motions and h−n, · · · , hn N
previsible processes such that N−1

∑
j∈In

(
hjt
)2 ≤ 1. Then, for all ε < 1/(2

√
T ), we have

E
[

exp

{
ε2

2N

∑
i,j∈In

(∫ T

0

hitdB
j
t

)2}]
≤ (1− 4ε2T )−N/4.

Proof. Define α := ε2

2N
, X ij

t =
∫ t

0
his dB

j
s , St :=

∑
i∈In(hit)

2, and Yt :=
∑

i,j∈In(X ij
t )2. Using

Itô’s rule we obtain

Yt = 2
∑
i,j∈In

∫ t

0

his

(∫ s

0

hiu dB
j
u

)
dBj

s +N

∫ t

0

Su du.

Define the martingale

Zt :=
∑
i,j∈In

∫ t

0

his

(∫ s

0

hiu dB
j
u

)
dBj

s .

Using the fact that 〈Bj, Bl〉t = δjlt, we have

〈Z, Z〉t =
∑

i,j,k∈In

∫ t

0

hish
k
s

(∫ s

0

hiu dB
j
u

)(∫ s

0

hku dB
j
u

)
ds.

Apply Cauchy-Schwarz to obtain

∑
i∈In

∣∣∣∣his(∫ s

0

hiu dB
j
u

)∣∣∣∣ ≤
(∑
i∈In

(his)
2

)1/2 (∑
i∈In

(∫ s

0

hiu dB
j
u

)2
)1/2

,

from which it follows that

〈Z, Z〉t = |〈Z, Z〉t| ≤
∫ t

0

Su Yu du.

Now we have

eαYt = e2αZt+αN
∫ t
0 Ss ds = e2αZt−4α2〈Z,Z〉t × e4α2〈Z,Z〉t+αN

∫ t
0 Su du.
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Apply Cauchy-Schwarz again to obtain

E
[
eαYt

]2 ≤ E
[
e4αZt−8α2〈Z,Z〉t

]
× E

[
e8α2

∫ t
0 Su Yu du+2αN

∫ t
0 Su du

]
.

By supermartingale properties, the first expected value in the right hand side of the previous
inequality is bounded by 1, hence

E
[
eαYt

]2 ≤ E
[
e8α2

∫ t
0 Su Yu du+2αN

∫ t
0 Su du

]
.

Now use the fact that Su ≤ N uniformly in u to conclude

E
[
eαYt

]2 ≤ e2αN2t E
[
e8α2N

∫ t
0 Yu du

]
= eε

2Nt E
[
e4ε2α

∫ t
0 Yu du

]
,

then use Jensen’s inequality to obtain

E
[
eαYt

]2 ≤ eε
2Nt 1

t

∫ t

0

E
[
e4ε2tαYu

]
du.

If 4ε2t < 1 we can use again Jensen’s inequality

E
[
eαYt

]2 ≤ eε
2Nt 1

t

∫ t

0

(
E
[
eαYu

])4ε2t
du =

eε
2Nt

t

∫ t

0

((
E
[
eαYu

])2
)2ε2t

du.

Define g(t) := E
[
eαYt

]2
, the above inequality reads

g(t) ≤ eε
2Nt

t

∫ t

0

(g(s))2ε2t ds.

Since 4ε2t < 1 implies 2ε2t < 1 we can apply Bihari’s Lemma [17, Chap. 1, Th. 8.2] to
obtain

E
[
eαYt

]
≤
(

(1− 2ε2t)eε
2tN
) 1

2(1−2ε2t) ≤ e
ε2t

2(1−2ε2t)
N
,

and, since 1− 4ε2t < 1− 2ε2t,

E
[
eαYt

]
≤ e

ε2t
(1−4ε2t)

N
= e

4ε2t
(1−4ε2t)

N/4
,

and, since − x
1−x > log(1− x), 0 < x < 1

E
[
eαYt

]
≤ e−

N
4

log(1−4ε2t))

E
[
eαYT

]
≤ (1− 4ε2T )−N/4.
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B Discrete Fourier Transforms (DFT) of Gaussian pro-

cesses

Define FN := e
2πi
N . Let a := (aj)j∈In be an N -periodic complex sequence. Its DFT ã :=

(ãp)p∈In is defined by

ãp =
∑
j∈In

ajF−jpN ,

from which the original sequence can be recovered by the inverse DFT (IDFT)

aj =
1

N

∑
p∈In

ãpF jp
N .

We need two Lemmas about the DFT of N -periodic sequences defined on In. The first one
is about the DFT of a translated sequence.

Lemma B.1. The DFT of the sequence ak := (aj+k)j∈In, k ∈ Z is given by

DFT (ak)
p = F kp

N ãp

Proof. The proof is left to the reader.

The second Lemma is about the DFT of the convolution of two sequences. Let (aj)j∈In
and (bj)j∈In . We define their (circular or periodic) convolution as

(a ? b)j =
∑
k∈In

akbj−k =
∑
k∈In

aj−kbk,

where indexes are taken modulo In. We have the Lemma.

Lemma B.2.
DFT−1(ã ? b̃)j = N ajbj,

and hence
(ã ? b̃)p = N DFT (ab)p

Proof. The proof is left to the reader.

We derive some properties of the Fourier transforms of the synaptic weights (J ijn )i,j∈In
and the Gaussian processes Gj

t . We define (R̃J (p, l))p,l∈In to be the length N DFT w.r.t to
the first index of the sequence (RJ (k, l)k,l∈In), that 2

R̃J (p, l) =
∑
k∈In

RJ (k, l)W−kp
N .

We first characterize the joint laws of the synaptic weights under γ.

2 There is no conflict with the definition (8) since they are always used in different contexts.
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Lemma B.3. Define

J̃pkn :=
∑
j∈In

J jkn F
−jp
N ,

to be the DFT of the synaptic weights J jk w.r.t the first index. Their covariance is

Eγ
[
J̃pkn J̃

ql
n

]
=

{
R̃J (p, k − l mod In) if p+ q = 0
0 otherwise

Proof. By (3) and the symmetry of RJ

Eγ
[
J̃pkn J̃

ql
n

]
=
∑
j,h∈In

Eγ
[
J jkn J

hl
n

]
F−jpN F−hqN =

1

N

∑
j,h∈In

RJ (h− j, l − k)F−jpN F−hqN =

1

N

∑
j,h∈In

RJ (j − h, k − l)F−jpN F−hqN .

By Lemma B.1 we have∑
j∈In

RJ (j − h, k − l)F−jpN = R̃J (p, k − l)F−hpN ,

and, since
∑

h∈In F
−h(p+q)
N = Nδp+q,

1

N

∑
j,h∈In

RJ (h− j, l − k)F−jpN F−hqN =

{
R̃J (p, k − l) if p+ q = 0
0 otherwise

,

Remark B.4. In the terminology of complex Gaussian vectors to be found, e.g. in [11],
Lemma B.3 states the following. Consider the N centered complex N-dimensional Gaussian
vectors J̃pn = (J̃pkn )k∈In, p ∈ In. Note that the complex conjugate J̃p∗n of J̃pn is J̃−pn , p ∈ In. If

p 6= 0 J̃pn is such that its pseudo-covariance matrix Eγ
[
J̃pn

tJ̃pn

]
= 0 and its covariance matrix

Eγ
[
J̃pn

tJ̃−pn

]
is equal to the circulant matrix Cp

n := (RJ (p, k − l))k,l∈In. If p = 0 J̃0
n is in

effect real and its covariance and pseudo-covariance matrixes are both equal to C0.

Remark B.5. Note that the covariance matrices Cp
n = Eγ

[
J̃pn

tJ̃−pn

]
, p ∈ In, are circulant

Hermitian, i.e. Cp
n = tCp ∗

n , because RJ is even. They are positive definite because, being
circulant, their eigenvalues are the values of the length N DFT of the sequence (R̃J (p, k))k∈In
which are positive because RJ is an autocorrelation function hence has a positive spectrum.
Hypothesis (9) guarantees that for N large enough these eigenvalues are strictly positive,
hence Cp

n is invertible.
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Remark B.6. Complex Gaussian calculus indicates that the probability density function
under γ of J̃pn, p 6= 0 is

pγ(J̃
p
n) =

1

πN |det(Cp
n)|

exp

{
−1

2

[
tJ̃−pn

tJ̃pn

] [ Cp
n 0

0 Cp∗
n

]−1 [
J̃pn
J̃−pn

]}
,

and, since Cp
n is invertible (see Remark B.5),

pγ(J̃
p
n) =

1

πN |det(Cp
n)|

exp

{
−1

2

[
tJ̃−pn

tJ̃pn

] [ (Cp
n)−1 0
0 (Cp∗

n )−1

] [
J̃pn
J̃−pn

]}
, (92)

Remark B.7. Note that Lemma B.3 implies that the complex centered Gaussian vectors J̃pn
and J̃qn are independent under γ if p+q 6= 0. Indeed, complex Gaussian calculus indicate that
the four jointly Gaussian N-dimensional centered real vectors Re(J̃pn), Im(J̃pn),Re(J̃qn), Im(J̃qn)
are independent if p+ q 6= 0.

Given a Hermitian matrix A of size N , we note λ1(A) ≥ · · · ≥ λN(A) its eigenvalues. As
a consequence of Lemma B.3 we obtain a useful upper bound.

Corollary B.8. For all n ∈ Z+, all p ∈ In and all vectors ζ = (ζj)j∈In and ξ = (ξj)j∈In of
R
N ,

sup
p∈In

∣∣∣∣∣ ∑
j,k∈In

Eγ
[
J̃pjn J̃

−pk
n

]
ζjξk

∣∣∣∣∣ ≤ ab ‖ζ‖2 ‖ξ‖2

a and b are defined in (7).

Proof. According to Remark B.5 we have∣∣∣∣∣ ∑
j,k∈In

Eγ
[
J̃pjn J̃

−pk
n

]
ζjξk

∣∣∣∣∣ =
∣∣ tζCp

nξ
∣∣ ≤ ‖Cp

n‖2 ‖ζ‖2 ‖ξ‖2

Next we have ‖Cp
n‖2 = λ1(Cp

n), where λ1(A) is the largest eigenvalue of the Hermitian matrix
A. By Remark B.5 the eigenvalues of the circulant matrix Cp

n are the values of the DFT of the
sequence (R̃J (p, k))k∈In . According to (5) and (7) they are all upperbounded in magnitude
by ab, and so is ‖Cp

n‖2.

Let (Zj
t ), j ∈ In be an element of T N . We recall the definition of the centered Gaussian

field (Gj
t):

Gj
t =

∑
l∈In

J jln f(Z l
t).

Taking the length N DFT of the In-periodic sequence (Gj
t)j∈In , we introduce the following

In-periodic stationary sequence of centered complex Gaussian processes (G̃p)p∈In

G̃p
t =

∑
l∈In

J̃pln f(Z l
t). (93)

We have the following independence result.
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Lemma B.9. If p + q 6= 0, under γµ̂n(Zn), the centered complex Gaussian processes (G̃p)t
and (G̃q)s are independent on [0, T ] and

Eγµ̂n(Zn)
[
G̃p
t G̃

q
s

]
=

{ ∑
l,k∈In R̃J (p, l − k)f(Z l

t)f(Zk
s ) if p+ q = 0

0 otherwise

Proof. We write

G̃p
t =

∑
l∈In

J̃pln f(Z l
t), G̃q

s =
∑
k∈In

J̃qkn f(Zk
s ),

The independence under γµ̂n(Zn) follows from the independence under γ of J̃pn and J̃qn if
p+ q 6= 0 proved in Remark B.7. Moreover

Eγµ̂n(Zn)
[
G̃p
t G̃

q
s

]
=
∑
l,k∈In

Eγ
[
J̃pln J̃

qk
n

]
f(Z l

t)f(Zk
s ).

The result follows from Lemma B.3.

We recall the expression (21) for Λt(G)

Λt(G) :=
exp

{
− 1

2σ2

∫ t
0

∑
k∈In

(
Gk
s

)2
ds
}

Eγµ̂n(Zn)
[
exp

{
− 1

2σ2

∫ t
0

∑
k∈In (Gk

s)
2 ds

}] ,
and define

Λ̃p
t (G̃) :=

exp

{
−αp

∫ t

0

∣∣∣G̃p
s

∣∣∣2 ds}
Eγµ̂n(Zn)

[
exp

{
−αp

∫ t

0

∣∣∣G̃p
s

∣∣∣2 ds}] p ∈ In, (94)

where α0 = 1
2σ2N

, αp = 1
σ2N

, p 6= 0.
Define also Un

t to be the N × N symmetric positive semi-definite matrix with elements
Un,jk
t =

∫ t
0
f(Zj

s)f(Zk
s )ds, j, k ∈ In.

Lemma B.10. The Λ̃p
t (G̃), p ∈ In, p ≥ 0, are independent under γµ̂n(Zn) and we have

Λt(G) =
∏

p∈In, p≥0

Λ̃p
t (G̃) (95)

Proof. By Parseval’s theorem ∑
k∈In

(
Gk
s

)2
=

1

N

∑
p∈In

∣∣∣G̃p
s

∣∣∣2 ,
since the Gks are real, G̃p

s = G̃−p ∗s , and we have∑
k∈In

(
Gk
s

)2
=

1

N

∣∣∣G̃0
s

∣∣∣2 +
2

N

∑
p∈In,p>0

∣∣∣G̃p
s

∣∣∣2 ,
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so that

− 1

2σ2

∫ t

0

∑
k∈In

(
Gk
s

)2
ds = −

n∑
p=0

αp

∫ t

0

∣∣∣G̃p
s

∣∣∣2 ds
Note that ∫ t

0

∣∣∣G̃p
s

∣∣∣2 ds = tJ̃−pn Un
t J̃

p
n,

implying that

exp

{
− 1

2σ2

∫ t

0

∑
k∈In

(
Gk
s

)2
ds

}
=

n∏
p=0

exp
{
−αp tJ̃−pn Un

t J̃
p
n

}
,

and hence

Eγµ̂n(Zn)

[
exp

{
− 1

2σ2

∫ t

0

∑
k∈In

(
Gk
s

)2
ds

}]
= Eγ

[
n∏
p=0

exp
{
−αp tJ̃−pn Un

t J̃
p
n

}]

Because of the independence under γ, proved in Remark B.7, of J̃pn and J̃qn if p + q 6= 0, we
have

Eγ
[

n∏
p=0

exp
{
−αp tJ̃−pn Un

t J̃
p
n

}]
=

n∏
p=0

Eγ
[
exp

{
−αp tJ̃−pn Un

t J̃
p
n

}]
=

n∏
p=0

Eγµ̂n(Zn)

[
exp

{
− 1

Nσ2

∫ t

0

∣∣∣G̃p
s

∣∣∣2 ds}] ,
and (95) follows.

The independence under γµ̂n(Zn) of the Λ̃p
t (G̃), p = 0, · · · , n, follows from the indepen-

dence under γ, proved in Remark B.7, of J̃pn and J̃qn if p + q 6= 0. This concludes the proof
of the Lemma.

We next characterize the law of (J̃pn, p ∈ In) under the law γ̄
µ̂n(Zn)
t = Λt(G) · γµ̂n(Zn).

Proposition B.11. For any Zn in T N , any p, q ∈ In, p + q 6= 0, J̃pn and J̃qn are, under

γ̄
µ̂n(Zn)
t independent centered complex Gaussian vectors. The covariance of J̃pn under γ̄

µ̂n(Zn)
t

is given by

Eγ̄
µ̂n(Zn)
t

[
J̃−pn

tJ̃pn

]
= ((Cp

n)−1 + αpU
n
t )−1

Proof. By Lemma B.10 and Remark B.7 we write

p
γ̄
µ̂n(Zn)
t

(J̃pn, J̃
q
n) = pγ(J̃

p
n, J̃

q
n)Λ̃p

t (G̃)Λ̃q
t (G̃) = pγ(J̃

p
n)Λ̃p

t (G̃)× pγ(J̃qn)Λ̃q
t (G̃),

and the independence follows.
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Next we have

Λ̃p
t (G̃) =

exp
{
−αp tJ̃−pn Un

t J̃
p
n

}
Eγ
[
exp

{
−αp tJ̃−pn Un

t J̃
p
n

}] ,
and since αp and Un

t are real and Un
t is symmetric

Λ̃p
t (G̃) =

exp

{
−αp

2

[
tJ̃−pn

tJ̃pn

] [ Un
t 0

0 Un
t

] [
J̃pn
J̃−pn

]}
Eγ
[
exp

{
−αp tJ̃−pn Un

t J̃
p
n

}] .

Combining this equation with (92), we write

pγ(J̃
p
n)Λ̃p

t =
1

πN |det(Cp
n)|Eγ

[
exp

{
−αp tJ̃−pn Un

t J̃
p
n

}]
× exp

{
−1

2

[
tJ̃−pn

tJ̃pn

] [ (Cp
n)−1 + αpU

n
t 0

0 (Cp∗
n )−1 + αpU

n
t

] [
J̃pn
J̃−pn

]}
,

which shows that, under γ̄
µ̂n(Zn)
t , J̃pn is centered complex Gaussian with covariance ((Cp

n)−1 +
αpU

n
t )−1

Corollary B.12. The centered processes G̃p
t and G̃q

s, p, q ∈ In are still Gaussian and inde-

pendent under γ̄
µ̂n(Zn)
t for all s ≤ t except for p+ q = 0. Moreover

Eγ̄
µ̂n(Zn)
t

[
G̃p
t G̃
−p
s

]
= Eγµ̂n(Zn)

[
Λ̃
|p|
t (G̃)G̃p

t G̃
−p
s

]
.

Proof. By Lemma C.9 the process (Gk
t )k∈In,t∈[0,T ] is Gaussian centered under γ̄

µ̂n(Zn)
t and

therefore so is the process (G̃p
t )p∈In,t∈[0,T ]. By Lemma B.10

Eγ̄
µ̂n(Zn)
t

[
G̃p
t G̃

q
s

]
= Eγµ̂n(Zn)

[
Λt(G)G̃p

t G̃
q
s

]
= Eγµ̂n(Zn)

[
G̃p
t G̃

q
s

n∏
r=0

Λ̃r
t (G̃)

]
= Eγµ̂n(Zn)

[
G̃p
t Λ̃
|p|
t (G̃)G̃q

t Λ̃
|q|
t (G̃)

]
By rewriting the last term in the right hand side of the previous equation as a function of
J̃pn and J̃qn and applying Proposition B.11 one finds that if p+ q 6= 0

Eγ̄
µ̂n(Zn)
t

[
G̃p
t G̃

q
s

]
= Eγµ̂n(Zn)

[
G̃p
t Λ̃
|p|
t (G̃)

]
Eγµ̂n(Zn)

[
G̃q
t Λ̃
|q|
t (G̃)

]
= 0.

Therefore, for all p, q ∈ In, p+ q 6= 0

Eγ̄
µ̂n(Zn)
t

[
G̃p
t G̃

q
s

]
= Eγ̄

µ̂n(Zn)
t

[
G̃p
t G̃
−q
s

]
= 0.
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This implies that the four real and imaginary parts of G̃p
t and G̃q

s are uncorrelated and
therefore, being Gaussian, independent. If p+ q = 0

Eγ̄
µ̂n(Zn)
t

[
G̃p
t G̃
−p
s

]
= Eγµ̂n(Zn)

[
Λt(G)G̃p

t G̃
−p
s

]
,

and by Proposition B.11

Eγ̄
µ̂n(Zn)
t

[
G̃p
t G̃
−p
s

]
= Eγµ̂n(Zn)

[
Λ̃
|p|
t (G̃)G̃p

t G̃
−p
s

]
for all p ∈ In and all 0 ≤ s ≤ t ≤ T .

Remark B.13. Note that since Cp
n is Hermitian positive definite, it is invertible and its in-

verse is also Hermitian positive definite. Un
t is real symmetric positive hence also Hermitian

positive. The sum (Cp
n)−1 + αpU

n
t is therefore Hermitian positive. The dual Weyl inequality

[25] commands that

λi+j−N((Cp
n)−1 + αpU

n
t ) ≥ λi((C

p
n)−1) + λj(αpU

n
t )

whenever 1 ≤ i, j, i + j − N ≤ N . Since (Cp
n)−1 is Hermitian positive definite for N large

enough, and αpU
n
t is Hermitian positive, this inequality implies that λN((Cp

n)−1 +αpU
n
t ) > 0

and hence that (Cp
n)−1 + αpU

n
t is invertible.

Next we have

λ1(((Cp
n)−1 + αpU

n
t )−1) =

1

λN((Cp
n)−1 + αpUn

t )
≤ 1

λi((C
p
n)−1) + λj(αpUn

t )
,

for 1 ≤ i, j ≤ N and i + j = N . Since λj(αpU
n
t ) ≥ 0 for j = 1, · · · , N and λi((C

p
n)−1) ≥

λN((Cp
n)−1) = λ1(Cp

n)−1 > 0 for all i = 1, · · · , N we conclude that

λ1(((Cp
n)−1 + αpU

n
t )−1) ≤ 1

λ1(Cp
n)
≤ CJ (96)

for some positive constant CJ independent of N and p.

In several places we use the following Lemma.

Lemma B.14. For all n ∈ Z+ and Z ∈ T N , and all vectors ζ = (ζj)j∈In and ξ = (ξj)j∈In
of RN ,

sup
p∈In

∣∣∣∣∣ ∑
j,k∈In

Eγµ̂n(Zn)

[
Λ̃p
t (G̃)J̃pjn J̃

−pk
n

]
ζjξk

∣∣∣∣∣ ≤ CJ ‖ζ‖2 ‖ξ‖2

where CJ is defined in (96). Λ̃p
t (G̃) is defined by (94), G̃p

t =
∑

l∈In J̃
pl
n f(Z l

t), and ‖ ‖2 is the
usual Euclidean norm.
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Proof. We use Proposition B.11. We define Dp
n := ((Cp

n)−1 + αpU
n
t )−1, p ∈ In, p ≥ 0. We

can write ∑
j,k∈In

Eγµ̂n(Zn)

[
Λ̃p
t (G̃)J̃pjn J̃

−pk
n

]
ζjξk = tζDp

nξ,

hence ∣∣∣∣∣ ∑
j,k∈In

Eγµ̂n(Zn)

[
Λ̃p
t (G̃)J̃pjn J̃

−pk
n

]
ζjξk

∣∣∣∣∣ =
∣∣ tζDp

nξ
∣∣ .

Considering the Euclidean norm in RN and the corresponding matrix norm, both noted ‖ ‖2,
we have ∣∣ tζDp

nξ
∣∣ ≤ ‖Dp

n‖2 ‖ζ‖2 ‖ξ‖2 .

By definition of the Euclidean norm, ‖Dp
n‖2 = λ1(Dp

n) ≤ CJ , by Remark B.13.

C Covariance functions

C.1 Time continuous setting

One of the basic constructions in this paper is the following. Given a measure µ ∈ PS(T Z), an
integer n (possibly infinite), and a time t ∈ [0, T ], define the following sequence of functions
Kk
µ : [0, t]2 → R

Kk
µ(s, u) =

∑
l

RJ (k, l)

∫
T Z
f(v0

s)f(vlu) dµ(v), (97)

for s, u ∈ [0, t]. The summation w.r.t l in the right hand side is either over the set In for
finite n or over Z. The index k in the left hand side has the same range as l. In case of
n infinite, the right hand side is well defined because of the absolute summability of the
sequences (RJ (k, l))l∈Z for all k ∈ Z and the fact that 0 ≤ f ≤ 1. In the case of n finite, the
sequence (Kk

µ)k∈In , noted Kn,k
µ , is N -periodic.

It is easy to check that the sequence (Kk
µ(s, u))k of functions is the covariance of a

centered stationary Gaussian process noted Gj
s, with s ∈ [0, t] and j is in In for finite n or in

Z otherwise. There are several possible representations of this process. In the case of finite
n we use

Gj
s =

∑
k∈In

J jkn f(vks ), (98)

and noted γµ
In

the law under which it has covariance Kn
µ , i.e.

Eγµ
In [

Gi
sG

j
u

]
= Kn,j−i

µ (s, u),

see the proof of Lemma C.2 below. A second representation is provided by the considera-
tion of the operator defined by the sequence Kk

µ. This operator is defined on the Hilbert
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space L2(Z × [0, t]) :=
⊕

i∈Z L
2([0, t]) (or L2(In × [0, t])) of infinite (or finite) sequences of

measurable square integrable complex functions gks on [0, t] such that

∑
k

∫ t

0

∣∣gks ∣∣2 ds <∞,
where, as usual, the summation w.r.t. k is over In for n finite or over Z otherwise. In the
sequel we treat only the case of infinite n, i.e. In = Z, the case of n finite being easily
deduced from this one.

We prove in Lemma C.1 that the operator K̄µ acting on L2(Z× [0, t]) by

(
K̄µ g

)k
s

=
∑
l

∫ t

0

Kk−l
µ (s, u)glu du, g ∈ L2(Z× [0, t]), (99)

is continuous, self-adjoint, and compact.
Note that by Fourier transform the space L2(Z × [0, t]) is isomorphic to the space

L2([−π, π] × [0, t]). Each element g of L2(Z × [0, t]) features a Fourier transform g̃ such
that

g̃(ϕ)(s) =
∑
k

gks e
−ikϕ,

where the series in the right hand side is absolutely convergent. For each ϕ ∈ [−π, π[,
g̃(ϕ) ∈ L2([0, t]).

By the convolution theorem, the operator K̄µ on L2(Z × [0, t]) induces an operator ¯̃Kµ

on L2([−π, π]× [0, t]) acting on such functions by(
¯̃Kµg̃
)

(ϕ)(s) =

∫ t

0

K̃µ(ϕ)(s, u)g̃(ϕ)(u) du,

where
K̃µ(ϕ)(s, u) =

∑
k

Kk
µ(s, u)e−ikϕ.

Lemma C.1. The linear operator K̄µ defined by (99) maps L2(Z × [0, t]) to itself and is
continuous, self-adjoint, and compact. Its norm is upperbounded by abt.

Proof.
1) Well-defined and continuous:
We prove that K̄µ maps L2(Z× [0, t]) onto itself. In effect, by Cauchy-Schwarz

∣∣∣(K̄µ g
)k
s

∣∣∣ ≤∑
l

(∫ t

0

∣∣Kk−l
µ (s, u)

∣∣2 du)1/2(∫ t

0

∣∣glu∣∣2 du)1/2

. (100)
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By Young’s convolution Theorem, 0 ≤ f ≤ 1, (5) and (97)(∑
k

∣∣∣(K̄µ g
)k
s

∣∣∣2)1/2

≤
∑
k

∣∣∣(K̄µ g
)k
s

∣∣∣ ≤
∑
k

(∫ t

0

∣∣Kk
µ(s, u)

∣∣2 du)1/2

×

(∑
k

∫ t

0

∣∣gku∣∣2 du
)1/2

≤ ab
√
t ‖g‖L2(Z×[0, t])

so that, ∥∥K̄µg
∥∥2

L2(Z×[0, t])
=
∑
k

∫ t

0

∣∣∣(K̄µ g
)k
s

∣∣∣2 ds ≤ a2b2t2 ‖g‖2
L2(Z×[0, t]) ,

and therefore K̄µ is well-defined as a linear mapping from L2(Z× [0, t]) to itself , bounded
and therefore continuous with

∥∥K̄µ

∥∥
L2(Z×[0, t])

≤ abt.

2) Self-adjoint:
This follows directly from the identity Kk

µ(u, s) = K−kµ (s, u).
3) Compactness:
We sketch the proof. We use the Kolmogorov-Riesz-Fréchet Theorem [2, Th. 4.26] for
the compactness of bounded set of Lp(Rn), the analog of the Ascoli-Arzelà Theorem for
continuous functions.

Let g̃ ∈ L2([−π, π] × [0, t]). Let h = (h1, h2) ∈ R
2. We define the operator τh :

L2([−π, π]× [0, t])→ L2([−π, π]× [0, t]) by

(τhg̃)(ϕ, s) = g̃(ϕ+ h1, s+ h2),

where the values are taken modulo 2π and modulo t, respectively. Given a bounded sequence

(g̃k)k∈N of L2([−π, π] × [0, t]) we want to prove that the set ( ¯̃Kµg̃
k)k is relatively compact.

According to the Kolmogorov-Riesz-Fréchet Theorem, it is sufficient to prove that

lim
|h|→0

∥∥∥τh( ¯̃Kµg̃
k)− ( ¯̃Kµg̃

k)
∥∥∥
L2([−π,π]×[0,t])

= 0 (101)

uniformly in k. In effect we have∥∥∥τh( ¯̃Kµg̃
k)− ( ¯̃Kµg̃

k)
∥∥∥2

L2([−π,π]×[0,t])
=∫ π

−π

∫ t

0

∣∣∣∣∫ t

0

(K̃µ(ϕ+ h1)(s+ h2, u)− K̃µ(ϕ)(s, u))g̃k(ϕ, u) du

∣∣∣∣2 dϕ ds. (102)
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We write, by (97),

K̃µ(ϕ+ h1)(s+ h2, u)− K̃µ(ϕ)(s, u)

=
∑
l∈Z

R̃J (ϕ+ h1, l)

∫
T
f(v0

s+h2
)f(vlu) dµ(v)− R̃J (ϕ, l)

∫
T
f(v0

s)f(vlu) dµ(v)

=
∑
l∈Z

(R̃J (ϕ+ h1, l)− R̃J (ϕ, l))

∫
T
f(v0

s+h2
)f(vlu) dµ(v)

+
∑
l∈Z

R̃J (ϕ, l)

∫
T

(f(v0
s+h2

)− f(v0
s))f(vlu) dµ(v), (103)

where we have noted
R̃J (ϕ, l) =

∑
k

RJ (k, l)e−ikϕ.

We first upperbound the magnitude of the first term in the right hand side of (103). By the
mean value theorem and (6)∣∣∣R̃J (ϕ+ h1, l)− R̃J (ϕ, l)

∣∣∣ ≤ |h1|
∑
k

|k| |RJ (k, l)| ≤ |h1| bl
∑
k

|k|ak.

Because of 0 ≤ f ≤ 1 and (6) again, we have∣∣∣∣∣∑
l∈Z

(R̃J (ϕ+ h1, l)− R̃J (ϕ, l))

∫
T Z
f(v0

s+h2
)f(vlu) dµ(v)

∣∣∣∣∣ ≤ C1|h1|, (104)

for some positive constant C1.
We next upperbound the magnitude of the second term in the right hand side of (103).

First, thanks to the Dominated Convergence Theorem, the function s →
∫
T f(v0

s) dµ(v) is
continuous on [0, t] 0 ≤ t ≤ T , and hence uniformly continuous,

∀ε > 0 ∃δ(ε) ≥ 0, |h2| ≤ δ ⇒
∣∣∣∣∫
T Z

(f(v0
s+h2

)− f(v0
s)) dµ(v)

∣∣∣∣ ≤ ε. (105)

Second, |R̃J (ϕ, l)| ≤ abl.
Combining (102)-(105) with the fact that (g̃k)k is bounded and Cauchy-Schwarz implies

(101).

We now prove that K̄µ is non negative.

Lemma C.2. The linear operator K̄µ defined by (99) is non negative.

Proof. Consider

Gi
s =

∑
j∈In

J ijn f(vjs).
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This implies, because of (3) and the stationarity of µ, that

Eγµ
In [

Gi
sG

k
u

]
= Eγµ

In

[∑
j,l∈In

J ijn J
kl
n f(vjs)f(vlu)

]
=

1

N

∑
j,l∈In

RJ (k − i, l − j)EµIn
[
f(vjs)f(vlu)

]
=

1

N

∑
j,l∈In

RJ (k − i, l − j)EµIn
[
f(v0

s)f(vl−ju )
]

=
∑
l∈In

RJ (k − i, l)EµIn
[
f(v0

s)f(vlu)
]

= Kn,k−i
µ (s, u),

from which it follows that〈
K̄n
µg, g

〉
L2(In×[0,t])

=
∑
k,l∈In

∫ t

0

(∫ t

0

Kn,k−l
µ (s, u)glu du

)
(gks )∗ ds

=
∑
k,l∈In

∫ t

0

∫ t

0

Eγµ
In [

Gk
sG

l
u

]
glu(g

k
s )∗ du ds

= Eγµ
In

∣∣∣∣∣∑
k∈In

∫ t

0

Gk
sg

k
s ds

∣∣∣∣∣
2
 ≥ 0.

We conclude that K̄n
µ is positive as an operator on L2(In× [0, t]) and hence, taking the limit

n→∞ that K̄µ is a positive operator on L2(Z× [0, t]).

We have the following Lemma related to the Fourier representation of the sequence
(Kk

µ(s, u))k∈Z.

Lemma C.3. The sequence (Kk
µ(s, u))k∈Z is the Fourier series of a three times continuously

differentiable periodic function [−π, π[→ R, ϕ → K̃µ(ϕ)(s, u) which is continuous w.r.t.
(s, u). This implies that the Kk

µ(s, u) are O(1/|k|3). Furthermore this convergence is uniform
in s, u, µ.

Proof. It follows from Lemma C.1 that for all s, u ∈ [0, t] that the sequence (Kk
µ(s, u))k∈Z is

the Fourier series of a continuous periodic function [−π, π[→ R, ϕ → K̃µ(ϕ)(s, u) which is
continuous w.r.t. (s, u). By definition

K̃µ(ϕ)(s, u) =
∑
k

Kk
µ(s, u)e−ikϕ,

where the series in the right hand side is absolutely convergent. By (97) we have

K̃µ(ϕ)(s, u) =
∑
l

R̃J (ϕ, l)

∫
T Z
f(v0

s)f(vlu) dµ(v),

and the order three differentiability of K̃µ(ϕ)(s, u) follows from Remark 2.3 as well as the
uniform convergence of Kk

µ(s, u).
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We have the following useful result.

Lemma C.4. We have∣∣∣K̃µ(ϕ)(s, u)
∣∣∣ ≤ ab ∀s, u ∈ [0, t], ϕ ∈ [−π, π[.

Proof. By (97) ∣∣∣K̃µ(ϕ)(s, u)
∣∣∣ ≤∑

l∈Z

∣∣∣R̃J (ϕ, l)
∣∣∣ ,

where
R̃J (ϕ, l) =

∑
k∈Z

RJ (k, l)e−ikϕ.

This implies that ∣∣∣K̃µ(ϕ)(s, u)
∣∣∣2 ≤ (∑

l∈Z

∣∣∣R̃J (ϕ, l)
∣∣∣)2

,

and, since by (5), (6) ∣∣∣R̃J (ϕ, l)
∣∣∣ ≤∑

k∈Z

|RJ (k, l)| ≤ bl
∑
k∈Z

ak = abl.

We conclude that ∣∣∣K̃µ(ϕ)(s, u)
∣∣∣2 ≤ a2b2.

By Lemmas C.1 and C.2 it follows that the spectrum of K̄µ is discrete and composed of
non negative eigenvalues noted λµm, m ∈ N. Let (hµm) be a corresponding orthonormal basis
of eigenvectors i.e. such as

K̄µh
µ
m = λµm h

µ
m, 〈hµm, h

µ
m′〉 = δmm′ ∀m, m′ ∈ N.

Next define gµm =
√
λµmhµm, m ∈ N. One has the following “SVD” decomposition of the

operator K̄µ.

Kk
µ(s, u) =

∑
m∈N

∑
l

gµm(l, s)gµm(l + k, u).

Given a covariance (Kk
µ)k∈Z we know that there exists a centered Gaussian process (Ω,A, γ, (Gk

t )k∈Z)
with covariance (Kk

µ)k∈Z. For any such process, if Hµ denotes the Gaussian space associated
(the closed linear span of (Gk

t )k∈Z in L2(Ω,A, γ)), then Hµ is isomorphic to the autorepro-
ducing Hilbert space Hµ associated to (Kk

µ)k∈Z by

φ : Hµ → Hµ

Z → Eγ [ZG··] .
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The space Hµ ⊂ L2(Z, [0, T ]) admits (gµm)m≥0 as an orthonormal basis. If ξµm = φ−1(gµm),
then (ξµm)m≥0 is a sequence of i.i.d. N (0, 1) random variables in Hµ and we have the following
representation for the Gaussian process Gi

s:

Gi
s =

∑
m≥0

gµm(i, s)ξµm,

where the convergence is in L2(Ω,A, γ). We note γµ the law on (Ω,A) under which the
sequence (Gi

s), i ∈ Z, s ∈ [0, t] has covariance Kk
µ.

Remark C.5. Note that given two measures µ1 and µ2 in PS(T Z) and the corresponding
operators K̄µ1 and K̄µ2, the operator K̄ := K̄µ1 ◦ K̄µ2 has the following kernel

Kk(s, u) =
∑
l

∫ t

0

Kk−l
µ1

(s, v)K l
µ2

(v, u) dv,

or, in the (continuous) Fourier domain

K̃(ϕ)(s, u) =

∫ t

0

K̃µ1(ϕ)(s, v)K̃µ2(ϕ)(v, u) dv,

and in the discrete case

K̃p(s, u) =

∫ t

0

K̃p
µ1

(s, v)K̃p
µ2

(v, u) dv, p ∈ In.

Consider the new self-adjoint positive compact operator L̄µ on L2(Z× [0, t]) defined by

L̄µ = (Id + σ−2K̄µ)−1K̄µ, (106)

and let Lµ be its kernel:

Lkµ(s, u) =
∑
m≥0

1

1 + λµm
σ2

∑
l

gµm(l, s)gµm(l + k, u).

Remark C.6. Note that (Id + σ−2K̄µ)−1 and K̄µ commute, i.e.,

L̄µ = (Id + σ−2K̄µ)−1K̄µ = K̄µ(Id + σ−2K̄µ)−1,

as can be readily seen by noticing that both sides of the previous equality are equal to

σ2
(

Id−
(
Id + σ−2K̄µ

)−1
)

, so that we also have

L̄µ = σ2
(

Id−
(
Id + σ−2K̄µ

)−1
)
. (107)

Remark C.7. Just as for the operator K̄µ we also use the finite size version L̄nµ of L̄µ whose
kernel is written Ln,kµ , k ∈ In.
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We have the analog of Lemma C.3 for the Fourier transform L̃µ(ϕ) of Lkµ.

Proposition C.8. The sequence (Lkµ(s, u))k∈Z is the Fourier series of a three times con-

tinuously differentiable periodic function ϕ → L̃µ(ϕ)(s, u) which is continuous w.r.t. (s, u).
The Fourier coefficients of L̃µ(ϕ)(s, u), i.e. the kernel (Lkµ(s, u))k∈Z of the operator L̄µ,
is O(1/|k|3), uniformly in s, u in [0, t] and µ. Therefore there exist constants C and D
independent of µ such that ∀s, u ∈ [0, t], ∀ϕ ∈ [−π, π),∑

k∈Z

|Lkµ(s, u)| ≤ C∑
k∈Z

(
Lkµ(s, u)

)2 ≤ D∣∣∣L̃µ(ϕ)(s, u)
∣∣∣ ≤ √D .

Proof. It follows from (106) and Remark C.6 that

¯̃Lµ(ϕ) =
(

Id + σ−2 ¯̃Kµ(ϕ)
)−1 ¯̃Kµ(ϕ) = ¯̃Kµ(ϕ)

(
Id + σ−2 ¯̃Kµ(ϕ)

)−1

. (108)

The order three continuous differentiability of L̃µ(ϕ)(s, u) w.r.t. ϕ follows from that of
K̃µ(ϕ)(s, u) proved in Lemma C.3. We also obtain the fact that the Lkµ(s, u) are O(1/|k|3)
uniformly in s, u in [0, t] and µ.

We have the following important Lemma which establishes that the kernels Lkµ(s, u) are
the covariance of the centered Gaussian field defined by (98) under another probability law
than γµ.

Lemma C.9. For all t ∈ [0, T ] and all s, u ∈ [0, t], under the new law Λt(G) · γµ, the family
of processes (Gi

s) is still centered and Gaussian with covariance Lµ given by

Eγµ
[
Λt(G)G0

sG
k
u

]
= Lt,kµ (s, u), (109)

where

Λt(G) =
exp

{
− 1

2σ2

∑
j

∫ t
0
(Gj

u)
2 du

}
Eγµ

[
exp

{
− 1

2σ2

∑
j

∫ t
0
(Gj

u)2 du
}] .

In the above, the summation w.r.t. j is over In for finite n or over Z otherwise.
In agreement with (22) and Remark 3.2 we note γ̄µt the corresponding probability law on

(Ω,A)

Proof. Let δ be a real number and GM,k
t =

∑M
m=0 g

µ
m(k, t)ξµm. Using the properties of the

basis (gµm)m≥0 we have

Eγµ
[

exp

{
δGM,k

t − 1

2σ2

∑
j

∫ t

0

(GM,j
s )2 ds

}]

= Eγµ
[

exp

{
δ

M∑
m=0

gµm(k, t)ξµm −
1

2σ2

M∑
m=0

λµm(ξµm)2

}]
.
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Because of the independence of the ξµn , this is equal to

M∏
m=0

Eγµ
[
exp

{
δgµm(k, t)ξµn −

1

2σ2
λµm(ξµm)2

}]
,

and, using standard Gaussian calculus, we obtain

Eγµ
[

exp

{
δGM,k

t − 1

2σ2

∑
j

∫ t

0

(GM,j
s )2 ds

}]

=
M∏
m=0

(
1 +

λµm
σ2

)−1/2

exp

(
δ2

2

M∑
m=0

1

1 + λµm
σ2

(gµm(k, t))2

)
.

In particular

Eγµ
[

exp

{
− 1

2σ2

∑
j

∫ t

0

(GM,j
s )2 ds

}]
=

(
M∏
m=0

(1 +
λµm
σ2

)

)−1/2

(110)

Eγµ
[
exp

{
δGM,k

t − 1
2σ2

∑
j

∫ t
0
(GM,j

s )2 ds
}]

Eγµ
[
exp

{
− 1

2σ2

∑
j

∫ t
0
(GM,j

s )2 ds
}] = exp

δ2

2

{
M∑
m=0

1

1 + λµm
σ2

(gµm(k, t))2

}
.

The same formula shows that the sequence exp
{
δGM,k

t − 1
2σ2

∑
j

∫ t
0
(GM,j

s )2 ds
}

is bounded

in L1+ρ(Ω,A, γ) for any positive real ρ so that this sequence is uniformly integrable. It

converges in probability to exp
{
δGk

t − 1
2σ2

∑
j

∫ t
0
(Gj

s)
2 ds
}

. We conclude that

Eγµ
[

exp

{
− 1

2σ2

∑
j

∫ t

0

(Gj
s)

2 ds

}]
=
∏
m∈N

(
1 +

λµm
σ2

)−1/2

(111)

Eγµ
[
exp

{
δGk

t − 1
2σ2

∑
j

∫ t
0
(Gj

s)
2 ds
}]

Eγµ
[
exp

{
− 1

2σ2

∑
j

∫ t
0
(Gj

s)2 ds
}] = exp

δ2

2

{∑
m∈N

1

1 + λµm
σ2

(gµm(k, t))2

}
. (112)

We have computed the moment generating function of Gi
s under the new law Λt(G) ·γµ. It is

still Gaussian centered with covariance obtained by deriving (112) twice at δ = 0 to obtain:

Eγµ
[
(Gk

t )
2 exp

{
− 1

2σ2

∑
j

∫ t
0
(Gj

s)
2 ds
}]

Eγµ
[
exp

{
− 1

2σ2

∑
j

∫ t
0
(Gj

s)2 ds
}] =

∑
m∈N

1

1 + λµm
σ2

(gµm(k, t))2 ,

which yields (109) by polarization.
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Proposition C.10. The application µ→ Lµ is Lipschitz continuous: There exists a positive
constant Ct such that

|Lkµ(s, u)− Lkν(s, u)| ≤ O
(
1/|k|3

)
CtDt(µ, ν) ∀s, u ∈ [0, t]

for all k ∈ Z.

Proof. According to (107) we have

L̄µ − L̄ν = σ2
((

Id + σ−2K̄ν

)−1 −
(
Id + σ−2K̄µ

)−1
)

=
(
Id + σ−2K̄ν

)−1 (
K̄µ − K̄ν

) (
Id + σ−2K̄µ

)−1
.

Define H̄µ =
(
Id + σ−2K̄µ

)−1
and H̄ν =

(
Id + σ−2K̄ν

)−1
. Using Remark C.5 we have

Lkµ(s, u)− Lkν(s, u) =
∑
l,j

∫ t

0

∫ t

0

Hk−l
ν (s, s1)(K l−j

µ (s1, s2)−K l−j
ν (s1, s2))Hj

µ(s2, u) ds1 ds2.

Let ξ be a coupling between µ and ν, (97) commands that∣∣Lkµ(s, u)− Lkν(s, u)
∣∣ ≤∑

l,j,m

∫ t

0

∫ t

0

∣∣Hk−l
ν (s, s1)

∣∣ |RJ (l − j,m)|Eξ
[∣∣∣f(w0

s1
)f(wms2)− f(w

′0
s1

)f(w
′m
s2

)
∣∣∣] ∣∣Hj

µ(s2, u)
∣∣ ds1 ds2.

Observing that f(w0
s1

)f(wms2)− f(w
′0
s1

)f(w
′m
s2

) = f(w0
s1

)(f(wms2)− f(w
′m
s2

)) + f(w
′m
s2

)(f(w0
s1

)−
f(w

′0
s1

)), we obtain, using 0 ≤ f ≤ 1

∑
m∈Z

|RJ (l − j,m)|
∫ t

0

∫
|f(w0

s1
)f(wms2)− f(w

′0
s1

)f(w
′m
s2

)| dξ(w,w′)

≤

(∑
m∈Z

|RJ (l − j,m)|

)∫
|f(w0

s1
)− f(w

′0
s1

)| dξ(w,w′)

+
∑
m∈Z

|RJ (l − j,m)|
∫
|f(wms2)− f(w

′m
s2

)| dξ(w,w′).

Equations (5) and (11) imply(∑
m∈Z

|RJ (l − j,m)|

)∫
|f(w0

s1
)− f(w

′0
s1

)| dξ(w,w′) ≤ b

b0

al−j

∫
dt(w,w

′) dξ(w,w′)

∑
m∈Z

|RJ (l − j,m)|
∫
|f(wms2)− f(w

′m
s2

)| dξ(w,w′) ≤ al−j

∫
dt(w,w

′) dξ(w,w′).
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This commands that∣∣Lkµ(s, u)− Lkν(s, u)
∣∣

≤ C
∑
l,j

∫ t

0

∫ t

0

∣∣Hk−l
ν (s, s1)

∣∣ al−j ∣∣Hj
µ(s2, u)

∣∣ ds1 ds2 ×
∫
dt(w,w

′) dξ(w,w′) (113)

for some constant C > 0. We use Proposition C.8, which clearly applies to H̄µ and H̄ν .
Since convolving two sequences (ck)k∈Z and (dk)k∈Z whose terms are O(1/|k|3) results in a
sequence which is also O(1/|k|3) it follows from (113) that∣∣Lkµ(s, u)− Lkν(s, u)

∣∣ ≤ O(1/|k|3)Ct2Dt(µ, ν).

C.2 Discrete time setting

In several parts of the paper we use time-discretized versions of these operators. Two cases
occur. The first is that of a general measure in PS(T Z), typically the limit measure µ∗. The
second is that of an empirical measure µ̂n(Vn) or µ̂n(V m

n ). Given a partition of [0, T ] into the
(m + 1) points vηm = v T

m
, with ηm := T/m, for v = 0 to m we deal with the operators K̄µ

and L̄µ. It will be clear from the context whether these operators are defined by a finite, e.g.
(K̄i

µ)i∈In , or infinite, e.g. (K̄i
µ)i∈Z,sequence. In the finite case these operators are Nv ×Nv

matrixes which are block Toeplitz for K̄µ and L̄µ.
We also consider several Fourier transforms of these operators. The continuous one

noted ¯̃Kµ(ϕ), ϕ ∈ [−π, π[ in both the infinite and finite cases, and the discrete one. In the
continuous case we have

K̃µ(ϕ) =
∑
j∈In

Kj
µe
−ijϕ, i2 = −1.

For the discrete case, and this applies only to µ = µ̂n(Vn) and µ = µ̂n(V m
n ), the operators

K̄µ and L̄µ are defined by the N v × v matrixes Kj
µ, j ∈ In. We consider their length N

Discrete Fourier Transform (DFT), i.e. the sequence of N v × v matrixes K̃p
µ, p ∈ In with

K̃p
µ =

∑
j∈In

Kj
µF
−jp
N ,

the corresponding operator, noted ¯̃Kvηm
µ , is block diagonal, the blocks having size v × v.

We also consider the sequence of Qm v × v matrixes, noted Kqm,j
µ , j ∈ Iqm , pad it with

N −Qm nul matrixes, and consider its length N Discrete Fourier Transform (DFT), i.e. the
sequence of N v × v matrixes noted K̃qm,p

µ , p ∈ In with

K̃qm,p
µ =

∑
j∈Iqm

Kj
µF
−jp
N ,
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the corresponding operator, noted ¯̃Kqm
µ , is also block diagonal, the blocks having also size

v × v.
Note that we have

K̃p
µ = K̃µ

(
2πp

N

)
, p ∈ In, (114)

and

K̃qm,p
µ = K̃qm

µ

(
2πp

N

)
, p ∈ In. (115)

All this holds mutatis mutandis if we replace Kµ by Lµ.
Also note that the following relations hold

L̃pµ̂n(Zn)(vηm, wηm) =
1

N
Eγµ̂n(Zn)

[
Λ̃|p|vηm(G̃)G̃−pvηmG̃

p
wηm

]
, p ∈ In, w ≤ v ∈ {0, · · · ,m}, (116)

where Zn = Vn or V m
n . We provide a short proof

Proof. According to (109) we have, taking the length N DFT of both sides,

L̃pµ̂n(Zn)(vηm, wηm) = Eγµ̂n(Zn)
[
Λvηm(G)G0

vηmG̃
p
wηm

]
.

Using the inverse DFT relation,

G0
vηm =

1

N

∑
q∈In

G̃q
vηm ,

so that

L̃pµ̂n(Zn)(vηm, wηm) =
1

N

∑
q∈In

Eγµ̂n(Zn)
[
Λvηm(G)G̃q

vηmG̃
p
wηm

]
.

By Proposition B.11 and Corollary B.12 we have

L̃pµ̂n(Zn)(vηm, wηm) =
1

N
Eγµ̂n(Zn)

[
Λ̃|p|vηm(G̃)G̃−pvηmG̃

p
wηm

]
,

which ends the proof.

D Proof of Lemmas 3.20-3.23

Proof of Lemma 3.20. We recall from (73) that

α1
s =

1

N2

∑
p∈In

∣∣∣θ̃ps − mθ̃p
s(m)

∣∣∣2 .
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The proof is based on decomposing the right hand side of this equation into four terms.
Using (61) we write,

θ̃ps − mθ̃p
s(m) = σ−2N−1Eγµ̂n(Vn)

[
Λ̃p
s(G̃)G̃p

s

∫ s

0

G̃−pr dṼ p
r − Λ̃p

s(m)(G̃)G̃p

s(m)

∫ s(m)

0

G̃−p
r(m)dṼ

p
r

]
=

σ−2N−1 Eγµ̂n(Vn)

[(
Λ̃p
s(G̃)− Λ̃p

s(m)(G̃)
)
G̃p

s(m)

∫ s(m)

0

G̃−p
r(m)dṼ

p
r

]
︸ ︷︷ ︸

α1,1,p
s

+

σ−2N−1 Eγµ̂n(Vn)

[
Λ̃p
s(G̃)

(
G̃p
s − G̃

p

s(m)

)∫ s(m)

0

G̃−p
r(m)dṼ

p
r

]
︸ ︷︷ ︸

α1,2,p
s

+

σ−2N−1 Eγµ̂n(Vn)

[
Λ̃p
s(G̃)G̃p

s

∫ s(m)

0

(
G̃−pr − G̃

−p
r(m)

)
dṼ p

r

]
︸ ︷︷ ︸

α1,3,p
s

+

σ−2N−1 Eγµ̂n(Vn)

[
Λ̃p
s(G̃)G̃p

s

∫ s

s(m)

G̃−pr dṼ p
r

]
︸ ︷︷ ︸

α1,4,p
s

, (117)

so that

α1
s ≤

4

σ4

1

N4

4∑
j=1

∑
p∈In

|α1,j,p
s |2.

We prove that for any M > 0, for any m sufficiently large, we have

lim
n→∞

1

N
logQn

(
sup
s∈[0,T ]

1

N4

∑
p∈In

|α1,j,p
s |2 ≥ εσ2

48TC

)
≤ −M j = 1, · · · , 4.

The proofs are somewhat similar. They all rely upon the use of Proposition B.11, Corol-
lary B.12, Lemma B.14, Isserlis’ and Cramer’s Theorems. Let 0 ≤ v ≤ m be such that
s(m) = vηm. For the rest of the proof we define

B :=
εσ2

48TC
. (118)

Proof for α1,1,p
s

From (117) we have

α1,1,p
s = Eγµ̂n(Vn)

[(
Λ̃p
s(G̃)− Λ̃p

s(m)(G̃)
)
G̃p

s(m)

∫ s(m)

0

G̃−p
r(m)dṼ

p
r

]
.
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Step 1: An upper bound for
∣∣∣Λ̃p

s(G̃)− Λ̃p

s(m)(G̃)
∣∣∣

We recall the definition of Λ̃p
s(G̃):

Λ̃p
s(G̃) =

e−
up

Nσ2

∫ s
0 |G̃pu|

2
du

Eγµ̂n(Vn)
[
e−

up

Nσ2

∫ s
0 |G̃pu|

2
du
] :=

Xp(s)

Eγµ̂n(Vn) [Xp(s)]
,

with up = 1 if p 6= 0 and u0 = 1/2, see (94). We then use the Lipschitz continuity of x→ e−x

for x ≥ 0: ∣∣e−x − e−y∣∣ ≤ |x− y|,
to obtain

Λ̃p
s(G̃) − Λ̃p

s(m)(G̃) =
Xp(s)−Xp(s

(m))

Eγµ̂n(Vn) [Xp(s)]
− Xp(s

(m))

Eγµ̂n(Vn) [Xp(s(m))]

(
1−

Eγµ̂n(Vn) [
Xp(s

(m))
]

Eγµ̂n(Vn) [Xp(s)]

)
,

∣∣∣Λ̃p
s(G̃)− Λ̃p

s(m)(G̃)
∣∣∣ ≤ up

Nσ2

∫ s
s(m)

∣∣∣G̃p
u

∣∣∣2 du
Eγµ̂n(Vn) [Xp(s)]

+ Λ̃p

s(m)(G̃)

up
Nσ2Eγ

µ̂n(Vn)

[∫ s
s(m)

∣∣∣G̃p
u

∣∣∣2 du]
Eγµ̂n(Vn)

[
e−

up

Nσ2

∫ s
0 |G̃pu|

2
du
] . (119)

We therefore have to find a strictly positive lower bound for Eγµ̂n(Vn)
[
e−

up

Nσ2

∫ s
0 |G̃pu|

2
du
]

and

show that there exists a positive constant D, independent of p and N such that

0 < D ≤ Eγµ̂n(Vn)
[
e−

up

Nσ2

∫ s
0 |G̃pu|

2
du
]
≤ 1 <∞. (120)

Indeed, since x→ e−x is convex, Jensen’s inequality commands that

e
− up

Nσ2

∫ s
0 Eγµ̂n(Vn)

[
|G̃pu|2

]
du ≤ Eγµ̂n(Vn)

[
e−

up

Nσ2

∫ s
0 |G̃pu|

2
du
]
.

According to Lemma B.9

Eγµ̂n(Vn)

[∣∣∣G̃p
u

∣∣∣2] =
∑
k,l∈In

R̃J (p, l − k)f(Zk
u)f(Z l

u) ≤ N
∑
`∈In

∣∣∣R̃J (p, `)
∣∣∣ .

Next we recall that
R̃J (p, `) =

∑
k∈In

RJ (k, `)F−pkN ,

and, from, ∣∣∣R̃J (p, `)
∣∣∣ ≤∑

k∈In

|RJ (k, `)| ≤ b`
∑
k∈In

ak,
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it follows from (5) and (7) ∑
`∈In

∣∣∣R̃J (p, `)
∣∣∣ ≤ ab.

Finally
up
Nσ2

∫ s

0

E
[∣∣∣G̃p

u

∣∣∣2] du ≤ upabT

σ2
≤ abT

σ2

and (120) is proved with D = e−
abT
σ2 .. Going back to (119) and since up ≤ 1, we have∣∣∣Λ̃p

s(G̃)− Λ̃p

s(m)(G̃)
∣∣∣ ≤ 1

NDσ2

(∫ s

s(m)

∣∣∣G̃p
u

∣∣∣2 du+ Λ̃p

s(m)(G̃)Eγµ̂n(Vn)

[∫ s

s(m)

∣∣∣G̃p
u

∣∣∣2 du]) . (121)

Step 2: upper bound for α1,1,p
s :

From the definition of α1,1,p
s in (117) and (121), we have

|α1,1,p
s |2 ≤ 2

N2D2σ4

(
Eγµ̂n(Vn)

[(∫ s

s(m)

∣∣∣G̃p
u

∣∣∣2 du) ∣∣∣G̃p

s(m)

∣∣∣ ∣∣∣∣∣
∫ s(m)

0

G̃−p
r(m)dṼ

p
r

∣∣∣∣∣
]2

+ Eγµ̂n(Vn)

[∫ s

s(m)

∣∣∣G̃p
u

∣∣∣2 du]2

Eγµ̂n(Vn)

[
Λ̃p

s(m)(G̃)
∣∣∣G̃p

s(m)

∣∣∣ ∣∣∣∣∣
∫ s(m)

0

G̃−p
r(m)dṼ

p
r

∣∣∣∣∣
]2

.

)

By Cauchy-Schwarz again,

|α1,1,p
s |2 ≤ 2

N2D2σ4
Eγµ̂n(Vn)

[(∫ s

s(m)

∣∣∣G̃p
u

∣∣∣2 du)2
](

Eγµ̂n(Vn)

∣∣∣G̃p

s(m)

∣∣∣2 ∣∣∣∣∣
∫ s(m)

0

G̃−p
r(m)dṼ

p
r

∣∣∣∣∣
2


+ Eγµ̂n(Vn)

[
Λ̃p

s(m)(G̃)
∣∣∣G̃p

s(m)

∣∣∣2] Eγµ̂n(Vn)

Λ̃p

s(m)(G̃)

∣∣∣∣∣
∫ s(m)

0

G̃−p
r(m)dṼ

p
r

∣∣∣∣∣
2
).

Applying once more Cauchy-Schwarz to the integral in the first factor in the right hand side
we obtain

|α1,1,p
s |2 ≤ 2

N2D2σ4
(s− s(m))

(∫ s

s(m)

Eγµ̂n(Vn)

[∣∣∣G̃p
u

∣∣∣4] du)

×

(
Eγµ̂n(Vn)

∣∣∣G̃p

s(m)

∣∣∣2 ∣∣∣∣∣
∫ s(m)

0

G̃−p
r(m)dṼ

p
r

∣∣∣∣∣
2
+

Eγµ̂n(Vn)

[
Λ̃p

s(m)(G̃)
∣∣∣G̃p

s(m)

∣∣∣2] Eγµ̂n(Vn)

Λ̃p

s(m)(G̃)

∣∣∣∣∣
∫ s(m)

0

G̃−p
r(m)dṼ

p
r

∣∣∣∣∣
2
). (122)
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Step 3: Apply Isserlis’ Theorem
We recall Isserlis’ formula for four centered Gaussian variables Xk, k = 1, · · · , 4

E [X1X2X3X4] = E [X1X2]E [X3X4] + E [X1X3]E [X2X4] + E [X1X4]E [X2X3] . (123)

For the first factor of the first term in the right hand side of (122) we let X1 = X2 = G̃p
u

and X3 = X4 = X∗1 = X∗2 = G̃−pu . By Lemma B.9 we have

Eγµ̂n(Vn)

[X1X2] = Eγµ̂n(Vn)

[X3X4] = 0,

if p 6= 0, and by Corollary B.8, and 0 ≤ f ≤ 1

max
{
Eγµ̂n(Vn)

[X1X2] ,Eγµ̂n(Vn)

[X3X4]
}
≤ Nab

if p = 0, as well as

max
j=1,2,k=3,4

Eγµ̂n(Vn)

[XjXk] ≤ Nab

for all p ∈ In, so that∫ s

s(m)

Eγµ̂n(Vn)

[∣∣∣G̃p
u

∣∣∣4] du ≤ 3(ab)2N2(s− s(m)), ∀p ∈ In.

For the second factor of the first term we use again (123) with X1 = G̃p

s(m) , X2 = X∗1 = G̃−p
s(m) ,

X3 =
∫ s(m)

0
G̃−p
r(m)dṼ

p
r and X4 = X∗3 =

∫ s(m)

0
G̃p

r(m)dṼ
−p
r . By Lemma B.9 again we have

Eγµ̂n(Vn)

[X1X4] = Eγµ̂n(Vn)

[X2X3] = 0,

if p 6= 0 and, by Corollary B.8, and 0 ≤ f ≤ 1

Eγµ̂n(Vn)

[X1X2] ≤ Nab, Eγµ̂n(Vn)

[X3X4] ≤ ab
∑
k∈In

∣∣∣∣∣
∫ s(m)

0

f(V k
r(m))dṼ

p
r

∣∣∣∣∣
2

,

as well as
max

{
Eγµ̂n(Vn)

[X1X4] ,Eγµ̂n(Vn)

[X2X3]
}
≤ Nab

if p = 0. Furthermore, for the same reasons,

max
(∣∣∣Eγµ̂n(Vn)

[X1X3]
∣∣∣ , ∣∣∣Eγµ̂n(Vn)

[X3X4]
∣∣∣) ≤ ab

√
N

∑
k∈In

∣∣∣∣∣
∫ s(m)

0

f(V k
r(m))dṼ

p
r

∣∣∣∣∣
2
1/2

,

so that

Eγµ̂n(Vn)

∣∣∣G̃p

s(m)

∣∣∣2 ∣∣∣∣∣
∫ s(m)

0

G̃−p
r(m)dṼ

p
r

∣∣∣∣∣
2
 ≤ 3(ab)2N

∑
k∈In

∣∣∣∣∣
∫ s(m)

0

f(V k
r(m))dṼ

p
r

∣∣∣∣∣
2

.
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By Lemma B.14 and 0 ≤ f ≤ 1

Eγµ̂n(Vn)

[
Λ̃p

s(m)(G̃)
∣∣∣G̃p

s(m)

∣∣∣2] ≤ NCJ ,

and

Eγµ̂n(Vn)

Λ̃p

s(m)(G̃)

∣∣∣∣∣
∫ s(m)

0

G̃−p
r(m)dṼ

p
r

∣∣∣∣∣
2
 ≤ CJ

∑
k∈In

∣∣∣∣∣
∫ s(m)

0

f(V k
r(m))dṼ

p
r

∣∣∣∣∣
2

,

so that the second factor of the second term in the right hand side of (122) is upper bounded

by (CJ )2N
∑

k∈In

∣∣∣∫ s(m)

0
f(V k

r(m))dṼ
p
r

∣∣∣2.

Step 4: Wrapping things up
Bringing all this together we find that

1

N4

∑
p∈In

|α1,1,p
s |2 ≤ A

1

N3
(s− s(m))2

∑
k∈In

∑
p∈In

∣∣∣∣∣
∫ s(m)

0

f(V k
r(m))dṼ

p
r

∣∣∣∣∣
2

,

for some positive constant A, and by Parseval’s Theorem

1

N4

∑
p∈In

|α1,1,p
s |2 ≤ A

1

N2
(s− s(m))2

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dV

l
r

)2

.

Next we use Corollary 3.6 to write

dV l
r = σdW l

r + σθlrdr, l ∈ In,

from which follows that

1

N4

∑
p∈In

|α1,1,p
s |2 ≤ 2A

N2
(s− s(m))2

(∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2

+

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))θ

l
rdr

)2)
.

By Cauchy-Schwarz and 0 ≤ f ≤ 1, one has(∫ s(m)

0

f(V k
r(m))θ

l
rdr

)2

≤ T

∫ s(m)

0

(θlr)
2dr.

So that,

1

N4

∑
p∈In

|α1,1,p
s |2 ≤ 2A

N2
(s−s(m))2

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2

+NT
∑
l∈In

∫ s(m)

0

(θlr)
2dr

 .
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We can conclude with Lemmas A.1 and 3.13.
We provide the details. Since s− s(m) ≤ T/m,

Qn

(
sup
s∈[0,T ]

1

N4

∑
p∈In

|α1,1,p
s |2 ≥ B

)
≤

Qn

 sup
s∈[0,T ]

1

N2m2

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2

≥ B

4T 2A

+

Qn

(
sup
s∈[0,T ]

1

Nm2

∑
l∈In

∫ s(m)

0

(θlr)
2dr ≥ B

4T 3A

)
,

where B is defined in (118). The logarithm of the left hand side is less than or equal to twice
the maximum of the logarithms of the two terms in the right hand side.

For the first term, writing E := B
4T 2A

, we have

logQn

 sup
s∈[0,T ]

1

N2m2

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2

≥ E

 =

logQn

 sup
s∈[0,T ]

1

m

1

2N

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2

≥ Nm
E

2

 .

Now let ζs be the submartingale

ζs = exp

 1

m

1

2N

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2
 .

By Doob’s submartingale inequality we have

Qn

 sup
s∈[0,T ]

1

m

1

2N

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2

≥ Nm
E

2

 = Qn

(
sup
s∈[0,T ]

ζs ≥ exp

(
Nm

E

2

))

≤ exp

(
−NmE

2

)
EQn [ζT ] .

The application of Lemma A.1 with ε2 = 1
m

yields

logQn

 sup
s∈[0,T ]

1

N2m2

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2

≥ E

 ≤ −NmE

2
− N

4
log(1− 4

T

m
),
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indicating that we can find m large enough such that

lim
n→∞

1

N
logQn

 sup
s∈[0,T ]

1

N2m2

∑
k∈In

∑
l∈In

(∫ s(m)

0

f(V k
r(m))dW

l
r

)2

≥ E

 ≤ −M. (124)

For the second term, writing E := B
4T 3A

, we have

Qn

(
sup
s∈[0,T ]

1

Nm2

∑
l∈In

∫ s(m)

0

(θlr)
2dr ≥ E

)
≤ Qn

(
1

N
sup
r∈[0,T ]

∑
l∈In

(θlr)
2 ≥ E

T
m2

)
,

and Lemma 3.13 shows that, given M > 0, we can find m large enough such that

lim
n→∞

1

N
Qn

(
sup
s∈[0,T ]

1

Nm2

∑
l∈In

∫ s(m)

0

(θlr)
2dr ≥ E

)
≤ −M. (125)

The combination of (124) and (125) shows that for all M > 0, for m large enough

lim
n→∞

1

N
logQn

(
sup
s∈[0,T ]

1

N4

∑
p∈In

|α1,1,p
s |2 ≥ B

)
≤ −M,

where B being defined in (118).
The proof for α1,2,p

s is very similar to that for α1,3,p
s which we give now.

Proof for α1,3,p
s

Step 1: An upper bound for
∣∣∣∫ s(m)

0

(
G̃−pr − G̃

−p
r(m)

)
dṼ p

r

∣∣∣2
From (117) we have

α1,3,p
s = Eγµ̂n(Vn)

[
Λ̃p
s(G̃)G̃p

s

∫ s(m)

0

(
G̃−pr − G̃

−p
r(m)

)
dṼ p

r

]
.

This commands, by Cauchy-Schwarz, that

∣∣α1,3,p
s

∣∣2 ≤ Eγµ̂n(Vn)
[
Λ̃p
s(G̃)|G̃p

s|2
]
× Eγµ̂n(Vn)

Λ̃p
s(G̃)

∣∣∣∣∣
∫ s(m)

0

(
G̃−pr − G̃

−p
r(m)

)
dṼ p

r

∣∣∣∣∣
2
 .

By Lemma B.14 and 0 ≤ f ≤ 1

Eγµ̂n(Vn)
[
Λ̃p
s(G̃)|G̃p

s|2
]
≤ CJ

∑
j∈In

f(V j
s )2 ≤ NCJ .

By Lemma B.14 again,

Eγµ̂n(Vn)

Λ̃p
s(G̃)

∣∣∣∣∣
∫ s(m)

0

(
G̃−pr − G̃

−p
r(m)

)
dṼ p

r

∣∣∣∣∣
2
 ≤ CJ

∑
j∈In

∣∣∣∣∣
∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dṼ
p
r

∣∣∣∣∣
2

.
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By Parseval’s Theorem

CJ
∑
p∈In

∑
j∈In

∣∣∣∣∣
∫ s(m)

0

(f(V j
r )− f(V j

r(m))dṼ
p
r

∣∣∣∣∣
2

= NCJ
∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m))dV
k
r

)2

.

and therefore ∑
p∈In

∣∣α1,3,p
s

∣∣2 ≤ (CJ )2N2
∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dV
k
r

)2

.

By (29)-(30) and Cauchy-Schwarz

(CJ )2N2
∑
j,k∈In

∣∣∣∣∣
∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dV
k
r

∣∣∣∣∣
2

≤

AN2

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

+
∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))θ
k
r dr

)2
 ,

for some constant A > 0, so that we have established that

1

N4

∑
p∈In

∣∣α1,3,p
s

∣∣2 ≤ A
1

N2

( ∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

+

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))θ
k
r dr

)2)
.

By Cauchy-Schwarz on the second integral

1

N4

∑
p∈In

∣∣α1,3,p
s

∣∣2 ≤ A
1

N2

( ∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

+(∑
j∈In

∫ s(m)

0

(f(V j
r )− f(V j

r(m)))
2dr

)(∑
k∈In

∫ s(m)

0

(θkr )
2 dr

))
.

So that

Qn

(
sup
s∈[0,T ]

1

N4

∑
p∈In

|α1,3,p
s |2 ≥ B

)
≤

Qn

 sup
s∈[0,T ]

1

N2

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

≥ E

+

Qn

(
1

N

(∑
j∈In

∫ T

0

(f(V j
r )− f(V j

r(m)))
2dr

)
1

N

(∑
k∈In

∫ T

0

(θkr )
2 dr

)
≥ E

)
, (126)
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where E = B/(2A).
Step 2: Upper bounding the second term in the right hand side of (126)
Let h(m) : N∗ → R

+ be such that limm→∞ h(m) = 0. h is specified later. The second term
in the right hand side is dealt with as follows

Qn

 1

N

∑
j∈In

∫ T

0

(f(V j
r )− f(V j

r(m)))
2dr︸ ︷︷ ︸

S1

× 1

N

∑
k∈In

∫ T

0

(θkr )
2 dr︸ ︷︷ ︸

S2

≥ E

 =

Qn
(
1S1>h(m)S1S2 + 1S1≤h(m)S1S2 ≥ E

)
≤

Qn
(
1S1>h(m)S1S2 ≥ E/2

)
+Qn

(
1S1≤h(m)S1S2 ≥ E/2

)
≤

Qn (S1 > h(m)) +Qn

(
S2 ≥

E

2h(m)

)
.

The term Qn
(
S2 ≥ E

2h(m)

)
can be dealt with Lemma 3.13 since limm→∞ h(m) = 0. Consider

next the term S1 := 1
N

∑
j∈In

∫ T
0

(f(V j
r ) − f(V j

r(m)))
2dr. By the Lipschitz continuity of f ,

(29), Cauchy-Schwarz, and r − r(m) ≤ T/m we have

S1 ≤
1

N

∑
j∈In

∫ T

0

(
V j
r − V

j

r(m)

)2
dr =

σ2

N

∑
j∈In

∫ T

0

(
W j
r −W

j

r(m) +

∫ r

r(m)

θjs ds

)2

dr

≤ 2σ2

N

∑
j∈In

∫ T

0

(
W j
r −W

j

r(m)

)2
dr +

2σ2

N

∑
j∈In

∫ T

0

(∫ r

r(m)

θjs ds

)2

dr

≤ 2σ2

N

∑
j∈In

∫ T

0

(
W j
r −W

j

r(m)

)2
dr +

2σ2

N

∑
j∈In

∫ T

0

(
(r − r(m))

∫ r

r(m)

(θjs)
2 ds

)
dr

≤ 2σ2

N

∑
j∈In

∫ T

0

(
W j
r −W

j

r(m)

)2
dr +

2σ2T 3

m2

1

N
sup
s∈[0,T ]

∑
j∈In

(
θjs
)2
.

We conclude that

Qn (S1 > h(m)) ≤ Qn

(
1

N

∑
j∈In

∫ T

0

(
W j
r −W

j

r(m)

)2
dr ≥ h(m)/(4σ2)

)

+Qn

(
1

N

∑
j∈In

sup
s∈[0,T ]

(
θjs
)2 ≥ 1

4σ2T 3
m2h(m)

)
.

The second term in the right hand side of the previous inequality is dealt with Lemma 3.13,
provided that limm→∞m

2h(m) =∞.
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Regarding the first term, decomposing the integral, we have

1

N

∑
j∈In

∫ T

0

(
W j
r −W

j

r(m)

)2
dr =

1

N

∑
j∈In

m−1∑
v=0

∫ (v+1)ηm

vηm

(
W j
r −W j

vηm

)2
dr

=
1

N

∑
j∈In

m−1∑
v=0

∫ ηm

0

(
W j,v
r

)2
dr,

where (W j,v
s )j,v are independent Brownian motions.∫ ηm

0

(
W j,v
r

)2
dr =

∫ 1

0

(
W j,v
rηm

)2
ηmdr =

∫ 1

0

(
1
√
ηm
W j,v
rηm

)2

(ηm)2dr.

We set Ŵ j,v
r = 1√

ηm
W j,v
rηm . Thanks to the scaling property of the Brownian motion, (Ŵ j,v

r )j,v
are independent Brownian motions, so that∫ ηm

0

(
W j,v
r

)2
dr = η2

m

∫ 1

0

(
Ŵ j,v
r

)2

dr.

We deduce

Qn

(
1

N

∑
j∈In

∫ T

0

(
W j
r −W

j

r(m)

)2
dr ≥ h(m)/(4σ2)

)

= Qn

(
1

Nm

∑
j∈In

m−1∑
v=0

∫ 1

0

(
Ŵ j,v
r

)2

dr ≥ mh(m)
1

4T 2σ2

)
.

This forces us to choose h in such a way that limm→∞mh(m) = ∞, e.g. h(m) = 1/
√
m.

Note that this implies that limm→∞m
2h(m) =∞. In order to apply Cramer’s Theorem, we

require that the random variable
∫ 1

0

(
Ŵ j,v
r

)2

dr has exponential moments. This existence is

due to the fact that, through Jensen’s Inequality,

E
[

exp

(
1

4

∫ 1

0

(Ws)
2ds

)]
≤ E

[ ∫ 1

0

exp

(
1

4
(Ws)

2

)
ds

]
=

∫ 1

0

E
[

exp

(
1

4
(Ws)

2

)]
≤ E

[
exp

(
1

4
(W1)2

)]
<∞.

Step 3: Upper bounding the first term in the right hand side of (126)
In order to deal with the first term in the right hand side of (126) we have to control the
term 1

N
sups∈[0,T ]

∑
j∈In(f(V j

s )− f(V j

s(m)))
2. In order to do this, we define the set

Kκ,n =

{
V :

1

N
sup
s∈[0,T ]

∑
j∈In

(
f(V j

s )− f(V j

s(m))
)2 ≥ κT

m

}
⊂ T N .

The following Lemma, whose proof is left to the reader, indicates that, for κ large enough,
the probability of this event is exponentially small for large n.
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Lemma D.1. For all M > 0, for κ > 0 large enough,

lim
n→∞

1

N
logQn

(
Kκ,n

)
≤ −M. (127)

Using this Lemma we write

lim
n→∞

1

N
logQn

 sup
s∈[0,T ]

1

N2

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

≥ E

 ≤
max

{
lim
n→∞

1

N
logQn (Kκ,n) ,

lim
n→∞

1

N
logQn

Kc
κ,n ∩

 sup
s∈[0,T ]

1

N2

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

≥ E


} ≤

max

{
−M,

lim
n→∞

1

N
logQn

Kc
κ,n ∩

 sup
s∈[0,T ]

1

N2

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

≥ E


},

(128)

where κ is large enough so that (127) holds. Note that

sup
s∈[0,T ]

1

N2

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

≥ E ⇐⇒

sup
s∈[0,T ]

h(m)

2N

∑
j,k∈In

(∫ s(m)

0

√
2m

κT
(f(V j

r )− f(V j

r(m)))dW
k
r

)2

≥ h(m)mNE

κT
,

where h : N→ R
+ is monotonically decreasing toward 0. Now let ζs be the submartingale

ζs = exp

h(m)

2N

∑
j,k∈In

(∫ s(m)

0

√
2m

κT
(f(V j

r )− f(V j

r(m)))dW
k
r

)2
 . (129)

Through Doob’s submartingale inequality,

Qn

(
Kc
κ,n ∩

 sup
s∈[0,T ]

1

N2

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

≥ E


)

≤ EQn
[
ζT ∩Kc

κ,n

]
exp

(
−h(m)mNE

κT

)
. (130)
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Choosing, e.g. h(m) = 1/
√
m we can apply Lemma A.1 with ε2 = h(m) and obtain EQn

[
ζT ∩

Kc
κ,n

]
≤
(
1− 4 T

m

)−N/4
. Hence, upon taking m→∞, we find that

lim
n→∞

1

N
logQn

Kc
κ,n ∩

 sup
s∈[0,T ]

1

N2

∑
j,k∈In

(∫ s(m)

0

(f(V j
r )− f(V j

r(m)))dW
k
r

)2

≥ E


 ≤
−M.

We have established that for m large enough

lim
n→∞

1

N
logQn

(
sup
s∈[0,T ]

1

N4

∑
p∈In

∣∣α1,3,p
s

∣∣2 ≥ B

)
≤ −M,

where B is defined in (118).
Proof for α1,4,p

s

We next consider α1,4,p
s in (117). As in the previous derivations, by Corollary 3.6, Cauchy-

Schwarz inequality and Parseval’s theorem, we write

1

N4

∑
p∈In

∣∣α1,4,p
s

∣∣2 ≤ A
1

N2

(∑
j,k∈In

(∫ s

s(m)

f(V j
r )dW k

r

)2

+
∑
j,k∈In

(∫ s

s(m)

f(V j
r )θkr dr

)2
)
, (131)

for some constant A > 0, independent of n, m. In the remaining of this Appendix we
neglect for simplicity the drift part, i.e. the second term in the right hand side of the
previous equation, since this can be dealt with similarly to the above by the use of Lemma
3.13 or 3.14.

From (131), neglecting the drift term, and letting E := B/A, we write

1

N
logQn

(
sup
s∈[0,T ]

A
1

N2

∑
j,k∈In

∣∣∣∣∫ s

s(m)

f(V j
r )dW k

r

∣∣∣∣2 ≥ B

)
=

1

N
logQn

(
sup
s∈[0,T ]

1

N2

∑
j,k∈In

∣∣∣∣∫ s

s(m)

f(V j
r )dW k

r

∣∣∣∣2 ≥ E

)
=

1

N
logQn

(
sup

0≤u≤m−1
sup

s∈[uηm,(u+1)ηm]

1

N2

∑
j,k∈In

∣∣∣∣∫ s

s(m)

f(V j
r )dW k

r

∣∣∣∣2 ≥ E

)
≤

1

N
log

(
m sup

0≤u≤m−1
Qn

(
sup

s∈[uηm,(u+1)ηm]

1

N2

∑
j,k∈In

∣∣∣∣∫ s

s(m)

f(V j
r )dW k

r

∣∣∣∣2 ≥ E

))
=

1

N
log

(
m sup

0≤u≤m−1
Qn

(
sup

s∈[uηm,(u+1)ηm]

ζs ≥ exp

(
Nh(m)E

2

)))
,
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where

ζs = exp

(
h(m)

2N

∑
j,k∈In

∣∣∣∣∫ s

s(m)

f(V j
r )dW k

r

∣∣∣∣2
)
.

The function h : N→ R
+ is increasing and is defined just below. Since ζs is a submartingale

for s ∈ [uηm, (u+ 1)ηm], by Doob’s submartingale inequality,

Qn

(
sup

s∈[uηm,(u+1)ηm)]

ζs ≥ exp

(
Nh(m)E

2

))
≤ exp

(
−Nh(m)E

2

)
EQn

[
ζ(u+1)ηm

]
.

We apply Lemma A.1 with ε =
√
h(m), T = ηm and conclude that, if h(m) ≤ m

4T
for m

large enough, e.g. h(m) =
√
m,

EQn
[
ζ(u+1)ηm

]
≤ (1− 4h(m)ηm)−N/4,

and therefore

1

N
logQn

(
sup
s∈[0,T ]

A
1

N2

∑
j,k∈In

∣∣∣∣∫ s

s(m)

f(V j
r )dW k

r

∣∣∣∣2 ≥ B

)
≤

logm

N
− h(m)E

2
− 1

4
log(1− 4h(m)ηm).

We have established that for all M > 0, for m large enough

lim
N→∞

1

N
logQn( sup

s∈[0,T ]

1

N4

∑
p∈In

∣∣α1,4,p
s

∣∣2 ≥ B)) ≤ −M,

and hence proved the Lemma.

Proof of Lemma 3.21. The salient point in the proof is the use of the difference of the
correlation functions Kµ̂n(Vn) and Kqm

µ̂n(Vn), defined in Appendix C.2, over the sets In × Iqm
and In × In. We remind the reader that qm is defined at the start of Section 3.2. The proof
shows that it is possible to choose m and qm as functions of n as stated in the Lemma.
Assume that s(m) = vηm, v = 0, · · · ,m− 1.
Step 1: Finding an upper bound of α2

vηm in terms of K̄µ̂n(Vn) − K̄qm
µ̂n(Vn)

In detail (73) implies that

α2
vηm =

5

N2σ4

∑
p∈In

∣∣∣(( ¯̃Lpµ̂n(Vn) −
¯̃Lqm,pµ̂n(Vn)

)
δṼ p

)
(vηm)

∣∣∣2 =

5

N2σ4

∑
p∈In

∣∣∣∣ v∑
w=0

(
L̃pµ̂n(Vn)(vηm, wηm)− L̃qm,pµ̂n(Vn)(vηm, wηm)

)
δṼ p

w

∣∣∣∣2.
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Next, by Cauchy-Schwarz on the w index

α2
vηm ≤

5

N2σ4

∑
p∈In

v∑
w=0

∣∣∣L̃pµ̂n(Vn)(vηm, wηm)− L̃qm,pµ̂n(Vn)(vηm, wηm)
∣∣∣2 × v∑

w=1

∣∣∣δṼ p
w

∣∣∣2
≤ 5

N2σ4

∑
p∈In

v∑
w=0

∣∣∣L̃pµ̂n(Vn)(vηm, wηm)− L̃qm,pµ̂n(Vn)(vηm, wηm)
∣∣∣2 ×∑

p∈In

v∑
w=1

∣∣∣δṼ p
w

∣∣∣2 . (132)

By (108), for all s, u ∈ [0, t] and for all t ∈ [0, T ], we have

L̃pµ̂n(Vn)(s, u)− L̃qm,pµ̂n(Vn)(s, u) = σ2
(

Id + σ−2 ¯̃Kqm,p
µ̂n(Vn)

)−1

(s, u)− σ2
(

Id + σ−2 ¯̃Kp
µ̂n(Vn)

)−1

(s, u).

By the identity A−1 −B−1 = A−1(B − A)B−1

σ2
(

Id + σ−2 ¯̃Kqm,p
µ̂n(Vn)

)−1

(s, u)− σ2
(

Id + σ−2 ¯̃Kp
µ̂n(Vn)

)−1

(s, u) =(
Id + σ−2 ¯̃Kqm,p

µ̂n(Vn)

)−1

◦
(

¯̃Kp
µ̂n(Vn) −

¯̃Kqm,p
µ̂n(Vn)

)
◦
(

Id + σ−2 ¯̃Kp
µ̂n(Vn)

)−1

(s, u),

where ◦ indicates the composition of the operators. By Remark C.5 in Appendix C we have

L̃pµ̂n(Vn)(s, u)− L̃qm,pµ̂n(Vn)(s, u) =∫ t

0

∫ t

0

(
Id + σ−2 ¯̃Kqm,p

µ̂n(Vn)

)−1

(s, x)
(
K̃p
µ̂n(Vn) − K̃

qm,p
µ̂n(Vn)

)
(x, y)

(
Id + σ−2 ¯̃Kp

µ̂n(Vn)

)−1

(y, u) dx dy,

for all s, u ∈ [0, t] and for all t ∈ [0, T ].
We recall further that3 (

Id + σ−2 ¯̃Kqm,p
µ̂n(Vn)

)−1

(s, x) ≤ 1,

and
(

Id + σ−2 ¯̃Kp
µ̂n(Vn)

)−1

(s, x) ≤ 1, (133)

we conclude that∣∣∣L̃pµ̂n(Vn)(vηm, wηm)− L̃qm,pµ̂n(Vn)(vηm, wηm)
∣∣∣ ≤ ∫ vηm

0

∫ vηm

0

∣∣∣(K̃p
µ̂n(Vn) − K̃

qm,p
µ̂n(Vn)

)
(x, y)

∣∣∣ dx dy,
and, by Cauchy-Schwarz, and v ≤ m,∣∣∣L̃pµ̂n(Vn)(vηm, wηm)− L̃qm,pµ̂n(Vn)(vηm, wηm)

∣∣∣2 ≤ T 2

∫ T

0

∫ T

0

∣∣∣(K̃p
µ̂n(Vn) − K̃

qm,p
µ̂n(Vn)

)
(x, y)

∣∣∣2 dx dy,
3This comes from the fact that, say for an n×n matrix A, but this is also true for general linear operators,

‖A‖max = max
i,j
|Aij | ≤ ‖A‖2 = σmax(A) the largest singular value of A
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so that, by (132),

α2
vηm ≤ 5T 2

N2σ4

∑
p∈In

∫ T

0

∫ T

0

∣∣∣(K̃p
µ̂n(Vn) − K̃

qm,p
µ̂n(Vn)

)
(x, y)

∣∣∣2 dx dy × ∑
p∈In

v∑
w=1

∣∣∣δṼ p
w

∣∣∣2 ,
and, by Parseval’s theorem,

α2
vηm ≤

5T 2

σ4

∑
k∈In

∫ T

0

∫ T

0

((
Kk
µ̂n(Vn) −K

qm,k
µ̂n(Vn)

)
(x, y)

)2

dx dy ×
∑
k∈In

v∑
w=1

∣∣δV k
w

∣∣2 .
Step 2: Choose m and qm as functions of n
We observe that Kqm,k

µ̂n(Vn) is equal to Kk
µ̂n(Vn) over the set Iqm and to 0 over the complement

of Iqm in In, their common value being

Kk
µ̂n(Vn)(x, y) =

∑
h∈In

RJ (k, h)
1

N

∑
l∈In

f(V l
x)f(V l+h

y ),

so that we have

α2
vηm ≤

5T 2

σ4

∑
k∈In\Iqm

∫ T

0

∫ T

0

(∑
h∈In

RJ (k, h)
1

N

∑
l∈In

f(V l
x)f(V l+h

y )

)2

dx dy ×
∑
k∈In

v∑
w=1

∣∣δV k
w

∣∣2 .
Because 0 ≤ f ≤ 1 we have

α2
vηm ≤

5T 4

σ4

∑
k∈In\Iqm

(∑
h∈In

|RJ (k, h)|

)2

×
∑
k∈In

v∑
w=1

∣∣δV k
w

∣∣2 .
Define

ψ(n, qm) :=
∑

k∈In\Iqm

(∑
h∈In

|RJ (k, h)|

)2

.

By choosing qm as a function of m, and m as a function of n, ψ(n, qm) can be made arbitrarily
small for large n and m . We have

α2
vηm ≤

5T 4

σ4
ψ(n, qm)

∑
k∈In

v∑
w=1

∣∣δV k
w

∣∣2 .
As before, we neglect the contribution of the drift term in (29) and write that, for m, n large
enough

α2
vηm ≤

5T 4

σ4
ψ(n, qm)

∑
k∈In

v∑
w=1

∣∣δW k
w

∣∣2 .
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Let us define

δW k
w :=

√
T

m
ξw,k, k ∈ In, w = 1, · · · ,m, (134)

where the ξw,ks are i.i.d. N (0, 1). Using (134), we have

sup
v=0,·,m−1

α2
vηm ≤

5T 5

σ4
Nψ(n, qm)

1

Nm

∑
k∈In

m∑
w=1

(ξw,k)2.

Define ϕ(n,m) := 5T 5Nψ(n, qm)/σ4 and assume that we have chosen ψ(n, qm) such that
limn,m→∞ ϕ(n,m) = 0.

Remark D.2. Because of (6) we have

ψ(n, qm) ≤ Ab2

n∑
k=qm+1

1

k4
≤ Ab2(n− qm)

1

(qm + 1)4
,

for some A > 0 independent of n and m, and therefore

ϕ(n,m) ≤ B(2n+ 1)(n− qm)
1

(qm + 1)4

with B = Ab2T 5. Now choose qm = ng(m) with g(m) ≤ 1. It follows that

(2n+ 1)(n− qm)
1

(qm + 1)4
=

1

n2
(2 +

1

n
)(1− g(m))

1(
g(m) + 1

n

)4 .

At this step, any choice of g ≤ 1 yields to limn,m→∞ ϕ(n,m) = 0.

Step 3: Apply Cramer’s Theorem and conclude
Next we set A := ε

3TCσ2 and have

Qn( sup
v=0,·,m−1

α2
vηm ≥

ε

3TCσ2
) = Qn

(
1

Nm

∑
k∈In

m∑
w=1

(ξw,k)2 ≥ A

ϕ(n,m)

)
. (135)

Since limn,m→∞ ϕ(n,m) = 0 we can choose n0 and m0 such that A
ϕ(n,m)

> 1 for n ≥ n0 and

m ≥ m0, 1 being the mean of (ξw,k)2. Let ρ := A
ϕ(n0,m0)

. We have

Qn

(
1

Nm

∑
k∈In

m∑
w=1

(ξw,k)2 ≥ A

ϕ(n,m)

)
≤ Qn

(
1

Nm

∑
k∈In

m∑
w=1

(ξw,k)2 ≥ ρ

)
,

as soon as n ≥ n0 and m ≥ m0. We conclude thanks to Cramer’s Theorem. We state in the
following Lemma a version adapted to our setting.
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Lemma D.3. Let ξw,k, w = 0, · · · ,m − 1, k ∈ In, be a sequence of i.i.d. N (0, 1) random
variables under Qn, and ρ > 1. There exists α > 0 depending on ρ such that

lim
n→∞

1

N
logQn

(
1

Nm

∑
k∈In

m−1∑
w=0

(ξw,k)2 ≥ ρ

)
≤ −mα.

Proof. See [8, Th. 2.2.3].

According to this Lemma there exists α(ρ) > 0 such that

1

N
logQn

(
1

Nm

∑
k∈In

m∑
w=1

(ξw,k)2 ≥ A

ϕ(n,m)

)
≤ −mα(ρ).

Combining this with (135) we obtain

1

N
logQn

(
sup
s∈[0,T ]

α2
s(m) ≥

ε

3TCσ2

)
≤ −mα(ρ),

as soon as n ≥ n0 and m ≥ m0. This completes the proof.

Proof of Lemma 3.22. The proof is based on a comparison of the length N DFTs of a
sequence of length N and of the same sequence of length Qm padded with N − Qm zeroes
followed by the use of Cramer’s Theorem, i.e. Lemma D.3.
Step 1: Fourier analysis
We have, with s(m) = vηm,

α3
vηm =

5

N2

∑
p∈In

∣∣∣σ−2( ¯̃Lpµ̂n(Vmn )δṼ
m,p)(vηm)− θ̃m,ps

∣∣∣2 .
By equations (108) and (114)

( ¯̃Lpµ̂n(Vmn )δṼ
m,p)(vηm) = σ2

v∑
w=0

δṼ m,p
w − σ2

v∑
w=0

(1 + σ−2 ¯̃Kp
µ̂n(Vmn ))

−1(vηm, wηm)δṼ m,p
w

= σ2

v∑
w=0

δṼ m,p
w − σ2

v∑
w=0

(1 + σ−2 ¯̃Kvηm
µ̂n(Vmn )(

2πp

N
))−1(vηm, wηm)δṼ m,p

w .

By (37) and (109) we have

θm,js = σ−2
∑
k∈Iqm

v∑
w=0

Lqm,kµ̂n(Vmn )(vηm, wηm)δV m,k+j
w .

Taking the length N DFT of both sides and using Lemma B.1 we obtain for p ∈ In

θ̃m,ps = σ−2
∑
k∈Iqm

F kp
N

v∑
w=0

Lqm,kµ̂n(Vmn )(vηm, wηm)δṼ m,p
w ,
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where FN = e
2πi
N . The relation

Lqm,kµ̂n(Vmn )(vηm, wηm) =
1

Qm

∑
q∈Iqm

L̃qm,qµ̂n(Vmn )(vηm, wηm)F qk
Qm
,

where FQm = e
2iπ
Qm , implies

θ̃m,ps = σ−2Q−1
m

∑
k,q∈Iqm

F kp
N F kq

Qm

v∑
w=0

L̃qm,qµ̂n(Vmn )(vηm, wηm)δṼ m,p
w .

According to (107),

¯̃Lqm,qµ̂n(Vmn ) = σ2
(

Id− (Id + σ−2 ¯̃Kqm,q
µ̂n(Vmn ))

−1
)

= σ2

(
Id−

(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πq

Qm

))−1
)
,

so that we have, using
∑

q∈Iqm
F kq
Qm

= Qmδk, where δk = 1 if k = 0 and 0 otherwise. And

therefore
∑

k,q∈Iqm
F kp
N F kq

Qm
= Qm,

θ̃m,ps =
v∑

w=0

δṼ m,p
w −

v∑
w=0

∑
k∈Iqm

1

2π

∑
q∈Iqm

e−ik( 2πq
Qm
− 2πp

N
)

(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πq

Qm

))−1

(vηm, wηm)
2π

Qm

δṼ m,p
w .

We conclude that

σ−2( ¯̃Lqm,pµ̂n(Vmn )δṼ
m,p)(vηm)− θ̃m,ps =

v∑
w=0

( ∑
k∈Iqm

1

2π

∑
q∈Iqm

e−ik( 2πq
Qm
− 2πp

N
)

(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πq

Qm

))−1

(vηm, wηm)
2π

Qm

−

(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πp

N

))−1

(vηm, wηm)

)
δṼ m,p

w .

With a slight abuse of notation and ignoring the time dependency for the moment we write(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πq

Qm

))−1

(vηm, wηm) =
1

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πq
Qm

) ,
and (

Id + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πp

N

))−1

(vηm, wηm) =
1

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πp
N

) .
Because

1

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πp
N

) =

∫ π

−π

δ(ϕ− 2πp
N

)

1 + σ−2 ¯̃Kqm
µ̂n(Vmn ) (ϕ)

dϕ,

76



and
1

2π

∑
k∈Z

e−ik(ϕ− 2πp
N

) = δ(ϕ− 2πp

N
),

we have

∑
k∈Iqm

1

2π

∑
q∈Iqm

e−ik( 2πq
Qm
− 2πp

N
)

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πq
Qm

) 2π

Qm

− 1

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πp
N

) =

∑
k∈Iqm

1

2π

∑
q∈Iqm

e−ik( 2πq
Qm
− 2πp

N
)

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πq
Qm

) 2π

Qm

−
∫ π

−π

δ(ϕ− 2πp
N

)

1 + σ−2 ¯̃Kqm
µ̂n(Vmn ) (ϕ)

dϕ =

∑
k∈Iqm

e2πik p
N

 1

2π

∑
q∈Iqm

e−2πik q
Qm

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πq
Qm

) 2π

Qm

− 1

2π

∫ π

−π

e−ikϕ

1 + σ−2 ¯̃Kqm
µ̂n(Vmn ) (ϕ)

dϕ

−
∑

k∈Z−Iqm

e2πik p
N

1

2π

∫ π

−π

e−ikϕ

1 + σ−2 ¯̃Kqm
µ̂n(Vmn ) (ϕ)

dϕ.

Define

∀ϕ ∈ [−π, π], h(ϕ) :=
e−ikϕ

1 + σ−2 ¯̃Kqm
µ̂n(Vmn ) (ϕ)

and ∆ϕ =
2π

Qm

,

and write

1

2π

∑
q∈Iqm

e−2πik q
Qm

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πq
Qm

) 2π

Qm

=
1

2π

2qm∑
q=0

h(−π +
∆ϕ

2
+ q∆ϕ).

This shows that the first term in the left hand side of the previous equations is the Riemann
sum, corresponding to the midpoint rule, approximating

∫ π
−π h(ϕ) dϕ. This implies that∣∣∣∣∣∣ 1

2π

∑
q∈Iqm

e−2πik q
Qm

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πq
Qm

) 2π

Qm

− 1

2π

∫ π

−π

e−ikϕ

1 + σ−2 ¯̃Kqm
µ̂n(Vmn ) (ϕ)

dϕ

∣∣∣∣∣∣ ≤ D

Q2
m

,

where D is a positive constant that depends on the maximum value of the magnitude of the
second order derivative of h over the interval [−π, π], hence bounded. Therefore we have
proved that∣∣∣∣∣∣

∑
k∈Iqm

e2πik p
N

 1

2π

∑
q∈Iqm

e−2πik q
Qm

1 + σ−2 ¯̃Kqm
µ̂n(Vmn )

(
2πq
Qm

) 2π

Qm

− 1

2π

∫ π

−π

e−ikϕ

1 + σ−2 ¯̃Kqm
µ̂n(Vmn ) (ϕ)

dϕ

∣∣∣∣∣∣ ≤
D

Qm

, ∀p ∈ In.
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We now consider the term 1
2π

∫ π
−π

e−ikϕ

1+σ−2 ¯̃Kqm
µ̂n(Vmn )

(ϕ)
dϕ. It is the kth coefficient in the Fourier

series of the periodic function ϕ → 1

1+σ−2 ¯̃Kqm
µ̂n(Vmn )

(ϕ)
. Since 1 + σ−2 ¯̃Kqm

µ̂n(Vmn ) (ϕ) is positive,

three times differentiable with a bounded third order derivative, see Lemma C.3, a standard
result in Fourier analysis indicates that this coefficient is O(1/|k|3). Since

∑∞
h=|k|

1
h3

is of

order O(1/k2), we conclude that for Qm large enough∣∣∣∣∣∣
∑

k∈Z−Iqm

e2πik p
N

1

2π

∫ π

−π

e−ikϕ

1 + σ−2 ¯̃Kqm
µ̂n(Vmn ) (ϕ)

dϕ

∣∣∣∣∣∣ ≤ D

Q2
m

,

for some constant D > 0.
Reintroducing the time dependency, and by Cauchy-Schwarz on the w index, we have

therefore proved that for Qm large enough

∣∣∣∣∣
v∑

w=0

( ∑
k∈Iqm

1

2π

∑
q∈Iqm

e−ik( 2πq
Qm
− 2πp

N
)

(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πq

Qm

))−1

(vηm, wηm)
2π

Qm

−

(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πp

N

))−1

(vηm, wηm)

)
δṼ m,p

w

∣∣∣∣∣ ≤(
v∑

w=0

∣∣∣∣∣ ∑
k∈Iqm

1

2π

∑
q∈Iqm

e−ik( 2πq
Qm
− 2πp

N
)

(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πq

Qm

))−1

(vηm, wηm)
2π

Qm

−

(
Id + σ−2 ¯̃Kqm

µ̂n(Vmn )

(
2πp

N

))−1

(vηm, wηm)

∣∣∣∣∣
2)1/2

×

(
v∑

w=0

|δṼ m,p
w |2

)1/2

≤

D

Qm

(
v∑

w=0

|δṼ m,p
w |2

)1/2

,

for some constant D > 0, and therefore that

α3
vηm =

5

N2

∑
p∈In

∣∣∣σ−2( ¯̃Lqm,pµ̂n(Vmn )δṼ
m,p)(vηm)− θ̃m,ps

∣∣∣2 ≤ 5D2

N2Q2
m

∑
p∈In

v∑
w=0

|δṼ m,p
w |2,

so that, by Parseval’s theorem

α3
vηm ≤

5D2

NQ2
m

∑
k∈In

v∑
w=0

|δV m,k
w |2.

Step 2: Apply Cramer’s Theorem and conclude
As in previous proofs, Lemma 3.14 allows us to neglect the contribution of the drift terms θm,p
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in the above so that we are interested in upper bounding the probability that the quantity
5D2σ2

NQ2
m

∑
k∈In

∑v
w=0 |δW k

w|2 = 5D2σ2T
NmQ2

m

∑
k∈In

∑v
w=0

(
ξw,k

)2
is larger than ε

3TCσ2 . Following the
same strategy as in the end of the proof of Lemma 3.21, we choose m0 such that ρ :=

Q2
m0

ε

15CT 2D2σ4 > 1. Applying again Lemma D.3 shows that there exists α(ρ) > 0 such that

1

N
logQn( sup

s∈[0,T ]

α3
s(m) ≥

ε

3TCσ2
) ≤ −mα(ρ),

as soon as m ≥ m0. This completes the proof.

Proof of Lemma 3.23.
The proof uses the idea of writing an upper bound of α4

vηm as a sum of three terms and upper
bounding each of the three terms. We only provide the proof for one of the three terms, the
one requiring the more work.
Step 1: An upper bound for α4

vηm

We go back to the initial definition of ¯̃Lqm,pµ̂n(Vn) and ¯̃Lqm,pµ̂n(Vmn ), see (116), to write the expression

for α4
vηm in (73) as

α4
vηm =

5

N2σ4

∑
p∈In

∣∣∣(( ¯̃Lqm,pµ̂n(Vn) −
¯̃Lqm,pµ̂n(Vmn )

)
δṼ p

)
(vηm)

∣∣∣2 =

5

N4σ4

∑
p∈In

∣∣∣∣Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃c,m)G̃c,m,−p

vηm

∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r − Λ̃p

vηm(G̃m)G̃m,−p
vηm

∫ vηm

0

G̃m,p

r(m) dṼ
p
r

]∣∣∣∣2 ,
(136)

where G̃c,m,p is the length N DFT obtained by padding with N − Qm zeros the length Qm

stationary periodic sequence

Gc,m,j
t =

∑
k∈In

J jkn,mf(V k
t ), j ∈ Iqm , (137)

and G̃m,p is the length N DFT obtained by padding with N − Qm zeros the length Qm

stationary periodic sequence

Gm,j
t =

∑
k∈In

J jkn,mf(V m,k
t ), j ∈ Iqm . (138)

The coefficients (J jkn,m)j∈Iqm , k∈In are defined in (32) and (33). In order to proceed, we upper
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bound the right hand side of (136) by a sum of three terms

α4
vηm ≤

15

N4σ4

∑
p∈In

∣∣∣∣Eγµ̂n(Vn)

[(
Λ̃p
vηm(G̃c,m)− Λ̃p

vηm(G̃m)
)
G̃c,m,−p
vηm

∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

]∣∣∣∣2︸ ︷︷ ︸
α4,1,p
vηm

+

15

N4σ4

∑
p∈In

∣∣∣∣Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)

(
G̃c,m,−p
vηm − G̃m,−p

vηm

)∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

]∣∣∣∣2︸ ︷︷ ︸
α4,2,p
vηm

+

15

N4σ4

∑
p∈In

∣∣∣∣Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)G̃m,−p

vηm

∫ vηm

0

(
G̃c,m,p

r(m) − G̃m,p

r(m)

)
dṼ p

r

]∣∣∣∣2︸ ︷︷ ︸
α4,3,p
vηm

,

and show that for any M > 0, all m ∈ N, there exists a constant c > 0 such that for all
ε ≤ exp(−cT )δ2/T , all 0 ≤ u ≤ m and all 0 ≤ v ≤ u

lim
n→∞

1

N
logQn

(
15

N4σ4

∑
p∈In

α4,j,p
vηm ≥

εc

3TCσ2
exp (vηmc) and τ(ε, c) ≥ uηm

)
≤ −M j = 1, 2, 3.

The proofs are somewhat similar. We provide a proof for the most complicated term corre-
sponding to j = 1 and leave it to the reader to provide proofs for the cases j = 2, 3.

Step 2: Upper bounding
∣∣∣Λ̃p

vηm(G̃c,m)− Λ̃p
vηm(G̃m)

∣∣∣
We first recall the definitions of Λ̃p

vηm(G̃c,m) and Λ̃p
vηm(G̃m):

Λ̃p
vηm(G̃c,m) =

e−
up

Nσ2

∫ vηm
0 |G̃c,m,ps |2 ds

Eγµ̂n(Vn)
[
e−

up

Nσ2

∫ vηm
0 |G̃c,m,ps |2 ds

] ,
and

Λ̃p
vηm(G̃m) =

e−
up

Nσ2

∫ vηm
0 |G̃m,ps |2 ds

Eγµ̂n(Vn)
[
e−

up

Nσ2

∫ vηm
0 |G̃m,ps |2 ds

] ,
with up = 1 if p 6= 0 and u0 = 1/2, see (94). First note

Λ̃p
vηm(G̃c,m)− Λ̃p

vηm(G̃m) =
e−

up

Nσ2

∫ vηm
0 |G̃c,m,ps |2 ds − e−

up

Nσ2

∫ vηm
0 |G̃c,ms |2 ds

Eγµ̂n(Vn)
[
e−

up

Nσ2

∫ vηm
0 |G̃c,m,ps |2 ds

]
+ Λ̃p

vηm(G̃m)
Eγµ̂n(Vn)

[
e−

up

Nσ2

∫ vηm
0 |G̃m,ps |2 ds

]
− Eγµ̂n(Vn)

[
e−

up

Nσ2

∫ vηm
0 |G̃c,m,ps |2 ds

]
Eγµ̂n(Vn)

[
e−

up

Nσ2

∫ vηm
0 |G̃c,m,ps |2 ds

] .
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Now, as in the proof of Lemma 3.20, we use the Lipschitz continuity of x→ e−x for x ≥ 0:∣∣e−x − e−y∣∣ ≤ |x− y|,
to obtain

∣∣∣Λ̃p
vηm(G̃c,m)− Λ̃p

vηm(G̃m)
∣∣∣ ≤ up

Nσ2

∣∣∣∣∫ vηm0

(∣∣∣G̃c,m,p
s

∣∣∣2 − ∣∣∣G̃m,p
s

∣∣∣2) ds

∣∣∣∣
Eγµ̂n(Vn)

[
e−

up

Nσ2

∫ vηm
0 |G̃m,ps |2 ds

]

+ Λ̃p
vηm(G̃m)

up
Nσ2

Eγµ̂n(Vn)

[∣∣∣∣∫ vηm0

(∣∣∣G̃c,m,p
s

∣∣∣2 − ∣∣∣G̃m,p
s

∣∣∣2) ds

∣∣∣∣]
Eγµ̂n(Vn)

[
e−

up

Nσ2

∫ vηm
0 |G̃m,ps |2 ds

] .

Because up = 1 or 1/2 and

0 < D ≤ Eγµ̂n(Vn)
[
e−

up

Nσ2

∫ vηm
0 |G̃m,ps |2 ds

]
≤ 1 <∞

for some constant D independent of p, m and N (see the proof of Lemma 3.20). So, we have∣∣∣Λ̃p
vηm(G̃c,m)− Λ̃p

vηm(G̃m)
∣∣∣ ≤
1

NDσ2

(∣∣∣∣∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 − ∣∣∣G̃m,p
s

∣∣∣2) ds

∣∣∣∣+
Λ̃p
vηm(G̃m)Eγµ̂n(Vn)

[∣∣∣∣∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 − ∣∣∣G̃m,p
s

∣∣∣2) ds

∣∣∣∣]
)
. (139)

Given two complex numbers x and y with complex conjugates x∗ and y∗, it is clear that

| |x|2 − |y2| | = |(x− y)x∗ + y(x∗ − y∗)| ≤ |x− y| (|x∗|+ |y|) = |x− y| (|x|+ |y|),

and therefore, by Cauchy-Schwarz,∣∣∣∣∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 − ∣∣∣G̃m,p
s

∣∣∣2) ds

∣∣∣∣ ≤ (∫ vηm

0

∣∣∣G̃c,m,p
s − G̃m,p

s

∣∣∣2 ds)1/2

×(
2

∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ds

)1/2

. (140)
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Combining (139) and (140) we obtain∣∣∣∣Eγµ̂n(Vn)

[(
Λ̃p
vηm(G̃c,m)− Λ̃p

vηm(G̃m)
)
G̃c,m,−p
vηm

∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

]∣∣∣∣2 ≤
4

N2D2σ4

(
Eγµ̂n(Vn)

[(∫ vηm

0

∣∣∣G̃c,m,p
s − G̃m,p

s

∣∣∣2 ds)1/2

×
(∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ds

)1/2

×

∣∣∣G̃c,m,p
vηm

∣∣∣ ∣∣∣∣∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

∣∣∣∣
])2

+

4

N2D2σ4

(
Eγµ̂n(Vn)

[(∫ vηm

0

∣∣∣G̃c,m,p
s − G̃m,p

s

∣∣∣2 ds)1/2

×
(∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ds

)1/2
])2

×(
Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)

∣∣∣G̃c,m,p
vηm

∣∣∣ ∣∣∣∣∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

∣∣∣∣])2

.

Three applications of Cauchy-Schwarz dictate

α4,1,p
vηm ≤

4

N2D2σ4
Eγµ̂n(Vn)

[∫ vηm

0

∣∣∣G̃c,m,p
s − G̃m,p

s

∣∣∣2 ds]×(
Eγµ̂n(Vn)

[∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ds ∣∣∣G̃c,m,p
vηm

∣∣∣2 ∣∣∣∣∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

∣∣∣∣2
]

+

Eγµ̂n(Vn)

[∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ds

]
× Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)

∣∣∣G̃c,m,p
vηm

∣∣∣2]×
Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)

∣∣∣∣∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

∣∣∣∣2
])

≤ E

N2
Eγµ̂n(Vn)

[∫ vηm

0

∣∣∣G̃c,m,p
s − G̃m,p

s

∣∣∣2 ds] (A1 + A2),

with E :=
4

D2σ4
and

A1 := Eγµ̂n(Vn)

[∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ds

]
× Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)

∣∣∣G̃c,m,p
vηm

∣∣∣2]
× Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)

∣∣∣∣∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

∣∣∣∣2
]

A2 := Eγµ̂n(Vn)

[∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ds ∣∣∣G̃c,m,p
vηm

∣∣∣2 ∣∣∣∣∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

∣∣∣∣2
]

=

∫ vηm

0

Eγµ̂n(Vn)

[(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ∣∣∣G̃c,m,p
vηm

∣∣∣2 ∣∣∣∣∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

∣∣∣∣2
]
ds.
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Step 3: Upper bounding A1

Using equations (137), (138) and Corollary B.8 we have

Eγµ̂n(Vn)

[∫ vηm

0

(∣∣∣G̃c,m,p
s

∣∣∣2 +
∣∣∣G̃m,p

s

∣∣∣2) ds

]
≤ 2abTN.

By Lemma B.14 we have

Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)

∣∣∣G̃c,m,p
vηm

∣∣∣2] ≤ CJN,

and

Eγµ̂n(Vn)

[
Λ̃p
vηm(G̃m)

∣∣∣∣∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r

∣∣∣∣2
]
≤ CJ

∑
k∈In

∣∣∣∣∫ vηm

0

f(V k
r(m)) dṼ

p
r

∣∣∣∣2 ,
so that

A1 ≤ 2ab(CJ )2TN2
∑
k∈In

∣∣∣∣∫ vηm

0

f(V k
r(m)) dṼ

p
r

∣∣∣∣2 . (141)

Step 4: Upper bounding A2 by Isserlis’ Theorem
Upperbounding the second term, A2, requires the use of Isserlis’ Theorem. In order to do
this, we recall Isserlis’ formula for six centered Gaussian random variables (Xk)k=1,··· ,6. For

simplicity we write Eγ for Eγµ̂n(Vn)
.

Eγ [X1X2X3X4X5X6] =
1

48

∑
σ∈S6

Eγ
[
Xσ(1)Xσ(2)

]
Eγ
[
Xσ(3)Xσ(4)

]
Eγ
[
Xσ(5)Xσ(6)

]
, (142)

where S6 denotes the set of permutations of {1, 2, · · · , 6}. Now if Xk+1 = X∗k , k = 1, 3, 5,
this reads

Eγ
[
|X1|2|X3|2|X5|2

]
= Eγ

[
|X1|2

]
Eγ
[
|X3|2

]
Eγ
[
|X5|2

]
+ Eγ

[
|X1|2

]
|Eγ [X3X5]|2 +

Eγ
[
|X1|2

]
|Eγ [X3X

∗
5 ]|2 + Eγ

[
|X5|2

]
|Eγ [X1X3]|2 + Eγ [X1X3]Eγ [X∗1X5]Eγ [X∗3X

∗
5 ] +

Eγ [X1X3]Eγ [X∗1X
∗
5 ]Eγ [X∗3X5]+Eγ

[
|X5|2

]
|Eγ [X1X

∗
3 ]|2 +Eγ [X1X

∗
3 ]Eγ [X∗1X5]Eγ [X3X

∗
5 ] +

Eγ [X1X
∗
3 ]Eγ [X∗1X

∗
5 ]Eγ [X3X5]+Eγ [X1X5]Eγ [X∗1X3]Eγ [X∗3X

∗
5 ]+Eγ [X1X5]Eγ [X∗1X

∗
3 ]Eγ [X3X

∗
5 ] +

Eγ
[
|X3|2

]
|Eγ [X1X5]|2 +Eγ [X1X

∗
5 ]Eγ [X∗1X3]Eγ [X∗3X5]+Eγ [X1X

∗
5 ]Eγ [X∗1X

∗
3 ]Eγ [X3X5] +

Eγ
[
|X3|2

]
|Eγ [X1X

∗
5 ]|2 . (143)

We let

X1 = G̃c,m,p
s or X1 = G̃m,p

s ,

X3 = G̃c,m,p
vηm ,

X5 =

∫ vηm

0

G̃c,m,p

r(m) dṼ
p
r .
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Note that we have

X2 = X∗1 = G̃c,m,−p
s or X∗1 = G̃m,−p

s ,

X4 = X∗3 = G̃c,m,−p
vηm ,

X6 = X∗5 =

∫ vηm

0

G̃c,m,−p
r(m) dṼ p

r .

Thanks to these identifications and using Corollary B.8 we have

Eγ
[
|X1|2

]
≤ abN, Eγ

[
|X3|2

]
≤ abN, Eγ

[
|X5|2

]
≤ ab

∑
k∈In

∣∣∣∣∫ vηm

0

f(V k
r(m)) dṼ

p
r

∣∣∣∣2 ,
max

i=1,2,3,4,j=5,6
|Eγ [XiXj]| ≤ ab

√
N

(∑
k∈In

∣∣∣∣∫ vηm

0

f(V k
r(m)) dṼ

p
r

∣∣∣∣2
)1/2

,

max
i=1,2,j=3,4

|Eγ [XiXj]| ≤ abN.

All fifteen terms in the right hand side of (143) are upper-bounded by

(ab)3N2
∑
k∈In

∣∣∣∣∫ vηm

0

f(V k
r(m)) dṼ

p
r

∣∣∣∣2 ,
so that

A2 ≤ 15(ab)3TN2
∑
k∈In

∣∣∣∣∫ vηm

0

f(V k
r(m)) dṼ

p
r

∣∣∣∣2 .
Step 5 Express the upper bound on α4,1,p

vηm using the stopping time τ(ε, c)

Using (141), and returning to the notation Eγµ̂n(Vn)

α4,1,p
vηm ≤ DEγµ̂n(Vn)

[∫ vηm

0

∣∣∣G̃c,m,p
s − G̃m,p

s

∣∣∣2 ds]×∑
k∈In

∣∣∣∣∫ vηm

0

f(V k
r(m)) dṼ

p
r

∣∣∣∣2
for some positive constant D independent of n and m. By Corollary B.8 and the Lipschitz
continuity of f

Eγµ̂n(Vn)

[∫ vηm

0

∣∣∣G̃c,m,p
s − G̃m,p

s

∣∣∣2 ds] ≤ ab

∫ vηm

0

∑
k∈In

(
f(V k

s )− f(V m,k
s )

)2
ds

≤ ab

∫ vηm

0

∑
k∈In

(
V k
s − V m,k

s

)2
ds,

so that we have

15

N4σ4

∑
p∈In

α4,1,p
vηm ≤

D

N4

∫ vηm

0

∑
k∈In

(
V k
s − V m,k

s

)2
ds×

∑
k∈In

∑
p∈In

∣∣∣∣∫ vηm

0

f(V k
r(m)) dṼ

p
r

∣∣∣∣2
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for some positive constant D. By Parseval’s theorem on the p index

15

N4σ4

∑
p∈In

α4,1,p
vηm ≤

D

N2

∫ vηm

0

1

N

∑
k∈In

(
V k
s − V m,k

s

)2
ds×

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) dV

l
r

)2

.

We next use the relation
dV l

r = σdW l
r + σθlr dr

to write

15

N4σ4

∑
p∈In

α4,1,p
vηm ≤

D

N2

∫ vηm

0

1

N

∑
k∈In

(
V k
s − V m,k

s

)2
ds×

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) dW

l
r

)2

+
D

N2

∫ vηm

0

1

N

∑
k∈In

(
V k
s − V m,k

s

)2
ds×

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) θ

l
r dr

)2

,

where we have included the constant σ2 into D.
Since, if τ(ε, c) ≥ uηm, by (76) we have

1

N

∑
k∈In

(
V k
s − V m,k

s

)2 ≤ ε exp(sc)

for all s ≤ uηm, we conclude that

lim
n→∞

1

N
logQn

(
15

N4σ4

∑
p∈In

α4,1,p
vηm ≥

εc

3TCσ2
exp (vηmc) and τ(ε, c) ≥ uηm

)
is upperbounded by twice the larger of the two terms

lim
n→∞

1

N
logQn

(
D

N2

∫ vηm

0

esc ds×
∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) dW

l
r

)2

≥ c exp (vηmc)

6TCσ2

)
(144)

lim
n→∞

1

N
logQn

(
D

N2

∫ vηm

0

esc ds×
∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) θ

l
r dr

)2

≥ c exp (vηmc)

6TCσ2

)
. (145)

Step 6: conclude by the use of Lemmas A.1 and 3.13
Since exp(vηmc)− 1 ≤ exp (vηmc), we can upper bound (144) by

lim
n→∞

1

N
logQn

(
1/c

2N

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) dW

l
r

)2

≥ Nc

12TCDσ2

)
.

By the exponential Tchebycheff inequality

Qn

(
1/c

2N

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) dW

l
r

)2

≥ Nc

12TCDσ2

)
≤

exp

(
− Nc

12TCDσ2

)
EQn

[
exp

(
1/c

2N

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) dW

l
r

)2
)]

.
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In order to apply Lemma A.1 to the above expectation we require

1√
c
<

√
m

2
√
vT

for v = 0, · · · , u and this is certainly satisfied if

1√
c
<

1

2
√
T
.

Lemma A.1 then commands that

EQn
[

exp

(
1/c

2N

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) dW

l
r

)2
)]
≤
(

1− 4
vT

mc

)−N/4
,

and hence

EQn
[

exp

(
1/c

2N

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m)) dW

l
r

)2
)]
≤
(

1− 4
T

c

)−N/4
.

Therefore we have

1

N
logQn

(
1/c

2N

∑
k∈In

∑
l∈In

(∫ T

0

f(V k
r(m)) dW

l
r

)2

≥ Nc

12TCDσ2

)
≤

− c
1

12TCDσ2
− 1

4
log

(
1− 4

T

c

)
.

We conclude that for c large enough, for all positive Ms and for all v = 0, · · · , u (144) is less
than −M .

Along similar lines, we can upperbound (145) by

lim
n→∞

1

N
logQn

(
1

N2

∑
k∈In

∑
l∈In

(∫ vηm

0

f(V k
r(m))θ

l
r dr

)2

≥ c2

6TCDσ2

)
,

and, by Cauchy-Schwarz, by

lim
n→∞

1

N
logQn

((
1

N

∑
k∈In

∫ vηm

0

(
f(V k

r(m))
)2
dr

)
×

(
1

N

∑
l∈In

∫ vηm

0

(
θlr
)2
dr

)
≥ c2

6TCDσ2

)
.

Since 0 ≤ f ≤ 1 and 0 ≤ vηm ≤ T , this is also upperbounded by

lim
n→∞

1

N
logQn

(
1

N

∑
l∈In

∫ T

0

(
θlr
)2
dr ≥ c2

6T 2CDσ2

)
≤ lim

n→∞

1

N
logQn

(
1

N
sup
r∈[0,T ]

∑
l∈In

(
θlr
)2 ≥ c2

6T 3CDσ2

)
,

and Lemma 3.13 allows us to conclude.
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E Proof of Lemma 3.24

We give the proof of Lemma 3.24.

Proof of Lemma 3.24.
Equation (14) resembles a Volterra equation of the second kind. As previously, we ignore
for the sake of simplicity the upper time index in Lµ and Kµ.
Step 1: Construction of the sequence of processes (Φi,n

t )i∈Z,n∈N∗
We proceed as in the case of the deterministic Volterra equations by constructing the fol-
lowing sequence of processes

∀j ∈ Z, V j,0
t = σW j

t

V j,1
t = σW j

t + σ−1

∫ t

0

(∑
i∈Z

∫ s

0

Liµ(s, u) dV i+j,0
u

)
ds

= σW j
t +

∫ t

0

(∑
i∈Z

∫ s

0

Liµ(s, u) dW i+j
u

)
ds,

where the infinite sum is the L2 limit of the finite sums. The existence of this limit is
guaranteed by Proposition C.8. We then compute the following difference

V j,1
t − V

j,0
t =

∫ t

0

(∑
i∈Z

∫ s

0

Liµ(s, u) dW i+j
u

)
ds =: ψj,1t . (146)

Using (146) we write formally

V j,2
t = σW j

t + σ−1

∫ t

0

∑
i∈Z

∫ s

0

Liµ(s, u) dV i+j,1
u ds

= V 1,j
t + σ−1

∫ t

0

∑
i∈Z

∫ s

0

Liµ(s, u)dψi+j,1u ds. (147)

Again, the convergence of the infinite sum is obtained by the study of the sequence of
variances of Gaussian processes. Applying the Young’s convolution theorem [2, Theorem
4.15], thanks to Proposition C.8, we deduce

sup
0≤v≤u≤s≤T

∑
l∈Z

(∑
i∈Z

Liµ(s, u)Ll−iµ (u, v)

)2

<∞.

We deduce easily the existence of the limit in (147). We write now

ψj,2t := V j,2
t − V

j,1
t = σ−1

∫ t

0

∑
i∈Z

∫ s

0

Liµ(s, u)dψi+j,1u ds,
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and hence
dψj,2t
dt

= σ−1
∑
i∈Z

∫ t

0

Liµ(t, s)
dψi+j,1s

ds
ds.

Iterating this process one finds that

V j,n
t − V j,n−1

t := ψj,nt ,

where ψj,nt is such that

dψj,nt
dt

= σ−1
∑
i∈Z

∫ t

0

Liµ(t, s)
dψi+j,n−1

s

ds
ds, n ≥ 2.

Define

Φj,n
t =

dψj,nt
dt

, n ≥ 1.

This sequence of processes satisfies

Φj,n
t = σ−1

∑
i∈Z

∫ t

0

Liµ(t, s) Φi+j,n−1
s ds, n ≥ 2 (148)

and

p∑
k=1

ψj,kt = V j,p
t − V

j,0
t = V j,p

t − σW
j
t =

p∑
k=1

∫ t

0

Φj,k
s ds. (149)

Step 2: Analysis of the sequence (Φj,k
t )j∈Z,k∈N∗

We now analyze the sequence (Φj,k
t )k≥1. First we note that

Φj,2
t = σ−1

∑
i∈Z

∫ t

0

Liµ(t, s) Φi+j,1
s ds,

with Φj,1
s =

∑
i∈Z

∫ s

0

Liµ(s, u) dW i+j
u . (150)

Consider next Φj,3
t . We write, using (148),

Φj,3
t = σ−1

∑
i∈Z

∫ t

0

Liµ(t, s) Φi+j,2
s ds = σ−2

∑
i,l∈Z

∫ t

0

Liµ(t, s)

(∫ s

0

Llµ(s, u)Φl+i+j,1
u du

)
ds.

(151)
Letting ` = l + i we have

Φj,3
t = σ−2

∑
i,`∈Z

∫ t

0

Liµ(t, s)

(∫ s

0

L`−iµ (s, u)Φ`+j,1
u du

)
ds

and note that this can be rewritten as

Φj,3
t = σ−2

∑
i,`∈Z

∫ t

0

(∫ t

s

Liµ(t, u)L`−iµ (u, s) du

)
Φ`+j,1
s ds,

88



by exchanging the order of integration. It follows for k ≥ 2 that

Φj,k
t = σ−(k−1)

∑
`∈Z

∫ t

0

L`µ,k−1(t, s) Φ`+j,1
s ds, (152)

with

Liµ,p+1(t, s) =
∑
l∈Z

∫ t

s

Llµ(t, u)Li−lµ,p(u, s) du p ≥ 1 (153)

and
Liµ,1 = Liµ. (154)

Step 3: Formal definition of the solution
It follows from (149) and (152) that

V j,p
t = σW j

t +

∫ t

0

Φj,1
s ds+ σ−1

∫ t

0

(∫ s

0

(∑
i∈Z

p−1∑
k=1

σ−(k−1)Liµ,k(s, u)

)
Φi+j,1
u du

)
ds.

If the series
∑p

k=1 σ
−(k−1)Liµ,k(s, u) is convergent for all i ∈ Z, we can formally define a

solution by

V j
t = σW j

t +

∫ t

0

Φj,1
s ds+ σ−1

∑
i∈Z

∫ t

0

(∫ s

0

M i
µ(s, u)Φi+j,1

u du

)
ds, (155)

where

M i
µ(s, u) = lim

p→∞

p∑
k=1

σ−(k−1)Liµ,k(s, u), (156)

is called the resolvent kernel.
This reads, because of (150),

V j
t = σW j

t +
∑
i∈Z

∫ t

0

(∫ s

0

Liµ(s, u) dW i+j
u

)
ds+

σ−1
∑
i∈Z

∫ t

0

(∫ s

0

M i
µ(s, u)

(∑
l∈Z

∫ u

0

Llµ(u, v) dW i+l+j
v

)
du

)
ds. (157)

Letting ` = l + i we have

V j
t = σW j

t +
∑
i∈Z

∫ t

0

(∫ s

0

Liµ(s, u) dW i+j
u

)
ds+

σ−1
∑
i,`∈Z

∫ t

0

(∫ s

0

M i
µ(s, u)

(∫ u

0

L`−iµ (u, v) dW `+j
v

)
du

)
ds.
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Step 4: Proof of the convergence of (156)
We prove the convergence of the right hand side of (156). Note that (153) is a convolution
with respect to the spatial index:

Liµ,p+1(t, s) =

∫ t

s

(
L·µ(t, u) ? L·µ,p(u, s)

)i
du.

Applying Young’s convolution theorem [2, Theorem 4.15], thanks to Proposition C.8, and
Cauchy-Schwarz we conclude that∑

l∈Z

∣∣Llµ,p+1(t, s)
∣∣ ≤ ∫ t

s

∑
l∈Z

∣∣Llµ(t, u)
∣∣×∑

l∈Z

∣∣Llµ,p(u, s)∣∣ du ≤∫ t

s

(∑
l∈Z

∣∣Llµ(t, u)
∣∣)2

du

1/2

×

∫ t

s

(∑
l∈Z

∣∣Llµ,p(u, s)∣∣
)2

du

1/2

. (158)

Applying this for p = 1 we obtain, according to (154)

∑
l∈Z

∣∣Llµ,2(t, s)
∣∣ ≤

∫ t

s

(∑
l∈Z

∣∣Llµ(t, u)
∣∣)2

du

1/2∫ t

s

(∑
l∈Z

∣∣Llµ(u, s)
∣∣)2

du

1/2

≤

∫ T

0

(∑
l∈Z

∣∣Llµ(t, u)
∣∣)2

du

1/2∫ T

0

(∑
l∈Z

∣∣Llµ(u, s)
∣∣)2

du

1/2

=: A(t)B(s). (159)

Both A(t) and B(s) are finite by Proposition C.8. Applying (158) for p = 2 we obtain, using
(159) (∑

l∈Z

∣∣Llµ,3(t, s)
∣∣)2

≤
∫ T

0

(∑
l∈Z

∣∣Llµ(t, u)
∣∣)2

du×
∫ t

s

(∑
l∈Z

∣∣Llµ,2(u, s)
∣∣)2

du

≤ A2(t)B2(s)

∫ t

s

A2(u) du. (160)

Applying (158) for p = 3 we obtain, using (160)(∑
l∈Z

∣∣Llµ,4(t, s)
∣∣)2

≤
∫ T

0

(∑
l∈Z

∣∣Llµ(t, u)
∣∣)2

du×
∫ t

s

(∑
l∈Z

∣∣Llµ,3(u, s)
∣∣)2

du

≤ A2(t)B2(s)

∫ t

s

A2(u)

∫ u

s

A2(v) dv du. (161)

In general we can write(∑
l∈Z

∣∣Llµ,k+2(t, s)
∣∣)2

≤ A2(t)B2(s)Fk(t, s), k = 1, 2, 3, · · · (162)
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where

F1(t, s) =

∫ t

s

A2(u) du (163)

F2(t, s) =

∫ t

s

A2(u)F1(u, s) du

...

Fk(t, s) =

∫ t

s

A2(u)Fk−1(u, s) du. (164)

We claim that

Fk(t, s) =
1

k!
(F1(t, s))k . (165)

This is true for k = 1. By induction, assume it holds for k − 1, then by (164) we have

Fk(t, s) =

∫ t

s

A2(u)Fk−1(u, s) du =
1

(k − 1)!

∫ t

s

A2(u) (F1(u, s))k−1 du =

1

(k − 1)!

∫ t

s

(F1(u, s))k−1 ∂F1(u, s)

∂u
du =

1

k!

[
(F1(u, s))k

]u=t

u=s
=

1

k!
(F1(t, s))k .

Next, by (163) we have

0 ≤ F1(t, s) ≤
∫ T

0

A2(u) du =

∫ T

0

(∫ T

0

∑
l∈Z

∣∣Llµ(u, v)
∣∣)2

dv du ≤ C2

for some constant C > 0 by Proposition C.8. By (162) and (165) we conclude that∑
i

σ−(k+1)
∣∣Liµ,k+2(t, s)

∣∣ ≤ σ−1 (σ−1C)k√
k!

A(t)B(s), (166)

which implies

σ−(k+1)
∣∣Liµ,k+2(t, s)

∣∣ ≤ σ−1 (σ−1C)k√
k!

A(t)B(s) (167)

for all i ∈ Z. and, since the series zk/
√
k! is absolutely convergent for all complex z, (167)

shows that the right hand side of (156) is absolutely and uniformly convergent so that
M i

µ(t, s) is well-defined for all i ∈ Z, continuous and uniformly bounded w.r.t. to i, and
(166) shows that the series M i

µ(t, s) is absolutely convergent, so that we have obtained (88).
Step 5: Existence and uniqueness of the solution
We then prove that (88) is a solution to (14) and that it is unique. Indeed, (88) implies

dV i+j
u = σdW i+j

u +
∑
k∈Z

(∫ u

0

Lkµ(u, v) dW k+i+j
v

)
du+

σ−1
∑
k,`∈Z

(∫ u

0

Mk
µ(u, v)

(∫ v

0

L`−kµ (v, w) dW `+i+j
w

)
dv

)
du, (168)
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and (14) can be rewritten

V j
t = σW j

t + σ−1
∑
i∈Z

∫ t

0

(∫ s

0

Liµ(s, u)dV i+j
u

)
ds. (169)

Replacing the value of dV i+j
u given by (168) in the right hand side of (169) we obtain

V j
t = σW j

t + σ−1(A+B + C)

with

A = σ
∑
i∈Z

∫ t

0

(∫ s

0

Liµ(s, u)dW i+j
u

)
ds, (170)

and, according to the definition (150) of Φj,1,

B =
∑
i,k∈Z

∫ t

0

(∫ s

0

Liµ(s, u)

(∫ u

0

Lkµ(u, v)dW k+i+j
v

)
du

)
ds

=
∑
i∈Z

∫ t

0

(∫ s

0

Liµ(s, u)Φi+j,1
u

)
ds. (171)

Next we find that, using again (150),

C = σ−1
∑
i,k,l∈Z

∫ t

0

(∫ s

0

Liµ(s, u)

(∫ u

0

Mk(u, v)

(∫ v

0

Ll−kµ (v, w) dW l+i+j
w

)
dv

)
du

)
ds

= σ−1
∑
i,k∈Z

∫ t

0

(∫ s

0

Liµ(s, u)

(∫ u

0

Mk(u, v)Φk+i+j,1
v dv

)
du

)
ds.

Exchanging the order of integration and applying k → k + i yields

C = σ−1
∑
i,k∈Z

∫ t

0

(∫ s

0

(∫ s

v

Liµ(s, u)Mk(u, v) du

)
Φk+i+j,1
v dv

)
ds

= σ−1
∑
i,k∈Z

∫ t

0

(∫ s

0

(∫ s

v

Liµ(s, u)Mk−i(u, v) du

)
Φk+j,1
v dv

)
ds.

Using the definition (156) of Mk and rearranging terms

C = σ−1
∑
k∈Z

∞∑
l=1

∫ t

0

(∫ s

0

σ−(l−1)

(∑
i∈Z

∫ s

v

Liµ(s, u)Lk−iµ,l (u, v) du

)
Φk+j,1
v dv

)
ds.

Because (153) this reads

C = σ−1
∑
k∈Z

∫ t

0

(∫ s

0

∞∑
l=1

(
σ−(l−1)Lkµ,l+1(s, v)

)
Φk+j,1
v dv

)
ds,
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and since, because of (156),

∞∑
l=1

(
σ−(l−1)Lkµ,l+1(s, v)

)
= σ

(
Mk(s, v)− Lk(s, v)

)
we end up with

C =
∑
k∈Z

∫ t

0

(∫ s

0

Mk(s, v)Φk+j,1
v dv

)
ds−

∑
k∈Z

∫ t

0

(∫ s

0

Lk(s, v)Φk+j,1
v dv

)
ds. (172)

Combining equations (170), (171) and (172) we find

σ−1(A+B+C) =
∑
i∈Z

∫ t

0

(∫ s

0

Liµ(s, u)dW i+j
u

)
ds+σ−1

∑
k∈Z

∫ t

0

(∫ s

0

Mk(s, v)Φk+j,1
v dv

)
ds,

and therefore that σW j
t + σ−1(A+B +C) is equal to the right hand side of (155). We have

proved that (88) is a solution to (14).
Uniqueness is obtained by noting that if two solutions V1,t and V2,t exist, there difference

Vt = V1,t − V2,t must satisfy the deterministic homogeneous Volterra equation of the second
type

V j
t = σ−1

∑
i∈Z

∫ t

0

∫ s

0

Liµ(s, u) dV i+j
u ds,

for which it is easily proved that the only solution is the null solution.

F Proof of Lemma 3.27

Lemma 3.27 follows from the following four Lemmas.

Lemma F.1. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
sup
s∈[0,t]

∣∣αj,1s ∣∣
]
≤ Cε

for some positive constant C independent of j.

Lemma F.2. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
sup
s∈[0,t]

∣∣αj,2s ∣∣
]
≤ Cε

for some positive constant C independent of j.
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Lemma F.3. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
sup
s∈[0,t]

∣∣αj,3s ∣∣
]
≤ Cε

for some positive constant C independent of j.

Lemma F.4. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
sup
s∈[0,t]

∣∣αj,4s ∣∣
]
≤ Cε

for some positive constant C independent of j.

Lemma 3.24 allows us to rewrite the αj,kt s, k = 1, 2, 3, 4 as follows.

αj,1t = σ
∑
i∈Iqm

∫ t

0

(Liµ(t, s)− Liµ(t(m), s(m))) dW i+j
s︸ ︷︷ ︸

αj,1,1t

+

σ−1
∑

i,k,L∈Iqm

∫ t

0

(Liµ(t, s)− Liµ(t(m), s(m)))

(∫ s

0

Mk
µ(s, u)

(∫ u

0

LL−kµ (u, v) dWL+i+j
v

)
du

)
ds︸ ︷︷ ︸

αj,1,2t

.

(173)

Lemma F.1 then follows from the following two Lemmas.

Lemma F.5. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
sup
s∈[0,t]

∣∣αj,1,1s

∣∣] ≤ Cε

for some positive constant C independent of j.

Lemma F.6. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
sup
s∈[0,t]

∣∣αj,1,2s

∣∣] ≤ Cε

for some positive constant C independent of j.

Proof of Lemma F.5. The proof is based upon recognizing that

Sjt :=
∑
i∈Iqm

∫ t

0

(Liµ∗(t, s)− L
i
µ∗(t

(m), s(m))) dW i+j
s
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is a continuous martingale with quadratic variation

〈
Sj·
〉
t

=
∑
i∈Iqm

∫ t

0

(Liµ∗(t, s)− L
i
µ∗(t

(m), s(m)))2 ds,

because of the independence of the Brownian motions.
So that we have

sup
s∈[0,t]

∣∣αj,1,1s

∣∣ = sup
s∈[0,t]

∣∣Sjs∣∣ .
By Burkholder-Davis-Gundy’s inequality we have

E

[
sup
s∈[0,t]

∣∣Sjs∣∣
]
≤ C1E

[〈
Sj·
〉1/2

t

]
≤

∑
i∈Iqm

∫ t

0

(Liµ∗(t, s)− L
i
µ∗(t

(m), s(m)))2 ds

1/2

.

This is upperbounded by(∫ t

0

∑
i∈Z

(Liµ∗(t, s)− L
i
µ∗(t

(m), s(m)))2 ds

)1/2

,

which, by Parseval’s Theorem is equal to

1√
2π

(∫ t

0

∫ π

−π

∣∣∣ ¯̃Lµ∗(ϕ)(t, s)− ¯̃Lµ∗(ϕ)(t(m), s(m))
∣∣∣2 dϕ ds)1/2

.

The relation
¯̃Lµ∗ = σ2

(
Id−

(
Id + σ−2 ¯̃Kµ∗

)−1
)

dictates that∣∣∣L̃µ∗(ϕ)(t, s)− L̃µ∗(ϕ)(t(m), s(m))
∣∣∣2 = σ4

∣∣∣∣(Id + σ−2K̃µ∗(ϕ)
)−1

(t, s)−
(

Id + σ−2K̃µ∗(ϕ)
)−1

(t(m), s(m))

∣∣∣∣2 .
By the Lipschitz continuity of the application A→ (Id +A)−1, for A a positive operator, we
obtain that∣∣∣L̃µ∗(ϕ)(t, s)− L̃µ∗(ϕ)(t(m), s(m))

∣∣∣2 ≤ C
∣∣∣K̃µ∗(ϕ)(t, s)− K̃µ∗(ϕ)(t(m), s(m))

∣∣∣2
for some positive constant C. Next we write

K̃µ∗(ϕ)(t, s) =
∑
k∈Z

R̃J (ϕ, k)

∫
T Z
f(v0

t )f(vks ) dµ∗(v),
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from which it follows that∣∣∣K̃µ∗(ϕ)(t, s)− K̃µ∗(ϕ)(t(m), s(m))
∣∣∣ ≤∑

k∈Z

∣∣∣R̃J (ϕ, k)
∣∣∣ ∣∣∣∣∫
T Z

(
f(v0

t )f(vks )− f(v0
t(m))f(vks(m))

)
dµ∗(v)

∣∣∣∣ =

∑
k∈Z

∣∣∣R̃J (ϕ, k)
∣∣∣ ∣∣∣∣∫
T Z

((
f(v0

t )− f(v0
t(m))

)
f(vks ) +

(
f(vks )− f(vks(m))

)
f(v0

t(m))
)
dµ∗(v)

∣∣∣∣ .
Because 0 ≤ f ≤ 1∣∣∣K̃µ∗(ϕ)(t, s)− K̃µ∗(ϕ)(t(m), s(m))

∣∣∣ ≤∑
k∈Z

∣∣∣R̃J (ϕ, k)
∣∣∣ ∫
T Z
|f(v0

t )−f(v0
t(m))|+|f(vks )−f(vks(m))| dµ∗(v).

By stationarity, we have∫
T Z
|f(v0

t )− f(v0
t(m))|+ |f(vks )− f(vks(m))| dµ∗(v)

=

∫
T Z
|f(v0

t )− f(v0
t(m))|+ |f(v0

s)− f(v0
s(m))| dµ∗(v)

≤ 2

∫
T Z

sup
0≤t1,t2≤T,|t2−t1|≤ηm

|v0
t2
− v0

t1
|dµ∗(v)

≤ ε

for m large enough. Thus, we have∣∣∣K̃µ∗(ϕ)(t, s)− K̃µ∗(ϕ)(t(m), s(m))
∣∣∣ ≤ Cε

for some positive constant C, since
∑

k∈Z

∣∣∣R̃J (ϕ, k)
∣∣∣ ≤ D for some positive constant D

independent of ϕ, and therefore, as announced,

E

[
sup
s∈[0,t]

∣∣αj,1,1s

∣∣] ≤ Cε,

for some positive constant C.
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Proof of Lemma F.6. We have

E

[∣∣∣∣∣ ∑
i,k,L∈Iqm

∫ t

0

(Liµ∗(t, s)− L
i
µ∗(t

(m), s(m)))

(∫ s

0

Mk
µ∗(s, u)

(∫ u

0

LL−kµ∗ (u, v) dWL+i+j
v

)
du

)
ds

∣∣∣∣∣
]
≤

E

[∫ t

0

∫ s

0

∑
i∈Iqm

∣∣Liµ∗(t, s)− Liµ∗(t(m), s(m))
∣∣

∑
k∈Iqm

∣∣Mk
µ∗(s, u)

∣∣ ∣∣∣∣∣∣
∫ u

0

∑
L∈Iqm

LL−kµ∗ (u, v) dWL+i+j
v

∣∣∣∣∣∣ du ds
]
≤

∫ t

0

∫ s

0

∑
i∈Iqm

∣∣Liµ∗(t, s)− Liµ∗(t(m), s(m))
∣∣ ∑
k∈Iqm

∣∣Mk
µ∗(s, u)

∣∣
E

 sup
u∈[0,t]

∣∣∣∣∣∣
∫ u

0

∑
L∈Iqm

LL−kµ∗ (u, v) dWL+i+j
v

∣∣∣∣∣∣
 du ds.

Because
∫ u

0

∑
L∈Iqm

LL−kµ∗ (u, v) dWL+i+j
v is a continuous martingale, the Bürkholder-Davis-

Gundy inequality, Parseval’s Theorem, and Proposition C.8 dictate

E

 sup
u∈[0,t]

∣∣∣∣∣∣
∫ u

0

∑
L∈Iqm

LL−kµ∗ (u, v) dWL+i+j
v

∣∣∣∣∣∣
 ≤ C1

∫ t

0

∑
L∈Iqm

(
LL−kµ∗ (t, v)

)2
dv

1/2

≤

C1

(∫ t

0

∑
L∈Z

(
LLµ∗(t, v)

)2
dv

)1/2

=
C1√
2π

(∫ t

0

∫ π

−π

∣∣∣L̃(ϕ)(t, v)
∣∣∣2 dϕ dv)1/2

≤ D

for some positive constant D. Next we have∑
k∈Iqm

∣∣Mk
µ∗(u, v)

∣∣ ≤∑
k∈Z

∣∣Mk
µ∗(u, v)

∣∣ ≤ E

for some positive constant E, so that

E

[
sup
s∈[0,t]

∣∣αj,1,2s

∣∣] ≤ DET 2 sup
s,u∈[0,t]

∑
i∈Iqm

∣∣Liµ∗(s, u)− Liµ∗(s
(m), u(m))

∣∣ .
Because of Lemma F.7 below there exists a positive convergent series A = (ai)i∈Z such that
for all ε > 0 there exists m0(ε) such that for all m ≥ m0∣∣Liµ∗(s, u)− Liµ∗(s

(m), u(m))
∣∣ ≤ εai

for all s, u ∈ [0, t]. This proves the Lemma.
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Lemma F.7. Let Ō be an operator on L2(Z, [0, T ]) defined by the continuous kernels Oi(t, s),
i ∈ Z. There exists a positive convergent series A = (ai)i∈Z such that for all ε > 0 there
exists m0(ε) such that for all i ∈ Z and for all m ≥ m0∣∣Oi(s, u)−Oi(s(m), u(m))

∣∣ ≤ εai

for all s, u ∈ [0, t].

Proof. We proceed by contradiction. Assume that for all positive convergent series A =
(ai)i∈Z there exists i0 ∈ Z, s0, u0 ∈ [0, t] and ε > 0 such that for all m ∈ N∗

εai0 <
∣∣∣Oi0(s0, u0)−Oi0(s

(m)
0 , u

(m)
0 )

∣∣∣ .
Choosing m large enough and by the continuity of Oi0(s.u) w.r.t. (s, u) we obtain a contra-
diction.

We proceed with the term αj,2t :

αj,2t = σ
∑
i∈Iqm

∫ t

t(m)

Liµ∗(t
(m), s(m)) dW i+j

s︸ ︷︷ ︸
αj,2,1t

+

σ−1
∑

i,k,L∈Iqm

∫ t

t(m)

Liµ∗(t
(m), s(m))

(∫ s

0

Mk
µ∗(s, u)

(∫ v

0

LL−kµ∗ (u, v) dWL+i+j
v

)
du

)
ds︸ ︷︷ ︸

αj,2,2t

. (174)

Lemma F.2 then follows from the following two Lemmas.

Lemma F.8. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
sup
s∈[0,t]

∣∣αj,2,1s

∣∣] ≤ Cε

for some positive constant C independent of j.

Lemma F.9. For all ε > 0, there exists m0(ε) in N such that for all m ≥ m0

E

[
sup
s∈[0,t]

∣∣αj,2,2s

∣∣] ≤ Cε

for some positive constant C independent of j.
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Proof of Lemma F.8. The proof is very similar to that of Lemma F.5. As in this Lemma it
is based upon recognizing that

Sjt :=
∑
i∈Iqm

∫ t

t(m)

Liµ∗(t, s) dW
i+j
s

is a continuous martingale with quadratic variation

〈
Sj·
〉
t

=
∑
i∈Iqm

∫ t

t(m)

(Liµ∗(t, s))
2 ds,

because of the independence of the Brownian motions.
We have

E

[
sup
s∈[0,t]

∣∣αj,2,1s

∣∣] = σE

[
sup
s∈[0,t]

∣∣Sjs∣∣
]
,

and, by Burkholder-Davis-Gundy’s inequality

E

[
sup
s∈[0,t]

∣∣αj,2,1s

∣∣] ≤ C1σ

∑
i∈Iqm

∫ t

t(m)

(Liµ∗(t, u))2 du

1/2

≤

C1σ

(∫ t

t(m)

∑
i∈Z

(Liµ∗(t, u))2 du

)1/2

=
C1σ√

2π

(∫ t

t(m)

∫ π

−π

∣∣∣L̃µ∗(ϕ)(t, u)
∣∣∣2 dϕ du)1/2

.

The fact that
∫ π
−π

∣∣∣L̃µ∗(ϕ)(t, w)
∣∣∣2 dϕ ≤ C for some positive constant C uniformly in t, w,

follows from Proposition C.8 and ends the proof.

Remark F.10. The proof of Lemma F.9 is very similar and left to the reader.

Next we write

αj,3t = σ
∑
i∈Iqm

∫ t

0

(
Liµ∗(t

(m), s(m))− Lqm,iµ̂n(Vmn )(t
(m), s(m))

)
dW i+j

s︸ ︷︷ ︸
αj,3,1t

+

σ−1
∑

i,k,L∈Iqm

∫ t

0

(
Liµ∗(t

(m), s(m))− Lqm,iµ̂n(Vmn )(t
(m), s(m))

)
(∫ s

0

Mk
µ∗(s, u)

(∫ u

0

LL−kµ∗ (u, v) dWL+i+j
v

)
du

)
ds, (175)
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and define

αj,3,2t :=
∑

i,k,L∈Iqm

∫ t

0

(
Liµ∗(t

(m), s(m))− Lqm,iµ̂n(Vmn )(t
(m), s(m))

)
(∫ s

0

Mk
µ∗(s, u)

(∫ u

0

LL−kµ∗ (u, v) dWL+i+j
v

)
du

)
ds.

Lemma F.3 then follows from the next two Lemmas.

Lemma F.11. For all ε > 0,

E

[
sup
s∈[0,t]

∣∣αj,3,1s

∣∣] ≤ Cε

for some positive constant C independent of j, for all m,n large enough.

Similarly we have

Lemma F.12. For all ε > 0,

E

[
sup
s∈[0,t]

∣∣αj,3,2s

∣∣] ≤ Cε

for some positive constant C independent of j, for all m,n large enough.

Sketch of a proof of Lemma F.11.

We note that Sj,mt :=
∑

i∈Iqm

∫ t
0

(
Liµ∗(t

(m), s(m))− Lqm,iµ̂n(Vmn )(t
(m), s(m))

)
dW i+j

s is a martin-

gale. Hence, by the Bürkholder-Davis-Gundy inequality,

E

[
sup
s∈[0,t]

|Sj,ms |

]
≤ C1E

[
〈Sj,m· 〉

1/2
t

]
≤ C1E

[
〈Sj,m· 〉t

]1/2
.

By the independence of the Brownian motions

〈Sj,m· 〉t =
∑
i∈Iqm

∫ t

0

(
Liµ∗(t

(m), u(m))− Lqm,iµ̂n(Vmn )(t
(m), u(m))

)2

du,

and therefore, by Cauchy-Schwarz

E

[
sup
s∈[0,t]

|Sj,ms |

]
≤ C1

∫ t

0

∑
i∈Iqm

E
[(
Liµ∗(t

(m), u(m))− Lqm,iµ̂n(Vmn )(t
(m), u(m))

)2
]
du

1/2

.

By Proposition C.10
∣∣∣Liµ∗(t(m), u(m))− Lqm,iµ̂n(Vmn )(t

(m), u(m))
∣∣∣ ≤ Dt(µ∗, µ̂n(V m

n )) O(1/|i|3), where

Dt is the Wasserstein distance between the two measures µ∗ and µ̂n(V m
n ), we conclude that

E

[
sup
s∈[0,t]

|Sj,n,ms |

]
≤ C1T

1/2E [Dt(µ∗, µ̂n(V m
n ))]

∑
i∈Iqm

O
(
1/|i|3

)
≤ CE [Dt(µ∗, µ̂n(V m

n ))]

for a constant C > 0. This concludes the proof of the Lemma since Lemma 3.25 implies that
limm,n→∞ E [Dt(µ∗, µ̂n(V m

n ))] = 0.
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The proof of Lemma F.12 is very similar and left to the reader. So is the proof of
Lemma F.4.
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