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Abstract. The present study describes the assimilation of
river water level observations and the resulting improvement
in flood forecasting. The Kalman Filter algorithm was built
on top of a one-dimensional hydraulic model which describes
the Saint-Venant equations. The assimilation algorithm folds
in two steps: the first one was based on the assumption that
the upstream flow can be adjusted using a three-parameter
correction; the second one consisted of directly correcting
the hydraulic state. This procedure was applied using a four-
day sliding window over the flood event. The background
error covariances for water level and discharge were repre-
sented with anisotropic correlation functions where the cor-
relation length upstream of the observation points is larger
than the correlation length downstream of the observation
points. This approach was motivated by the implementation
of a Kalman Filter algorithm on top of a diffusive flood wave
propagation model. The study was carried out on the Adour
and the Marne Vallage (France) catchments. The correction
of the upstream flow as well as the control of the hydraulic
state during the flood event leads to a significant improve-
ment in the water level and discharge in both analysis and
forecast modes.

1 Introduction

River stream flow forecasting is a critical issue for the se-
curity of people and infrastructures, the function of power
plants, and water resources management. Many efforts
have contributed to the development of open channel flow

modeling, based on mass, momentum and energy conser-
vation equations (Chow, 1959; Hervouet, 2003). Still, un-
certainties in these models are such that river stream flow
modeling remains strenuous work. Major uncertainties come
from the model itself as the physics of the system are sim-
plified and discretized, as well as from hydrological bound-
ary conditions (upstream flow or lateral inflow), meteorolog-
ical boundary conditions (precipitation, pressure and wind)
and from hydrological initial conditions. Hydraulic mod-
els also rely on various parameterizations expressed as nu-
merical parameters (stability conditions for the numerical
scheme), geometric parameters (cross sections, gates and
weir dimensions) and hydraulic parameters (flood plain stor-
age, friction, discharge). Calibrating a hydraulic model of-
ten means adjusting Strickler coefficients, discharge coef-
ficients at cross or lateral devices, seepage values or cross
sectional geometry. The calibration of these parameters has
been widely investigated (Durand et al., 2008; Geese et al.,
2011; Malaterre et al., 2010) by focusing either on calibra-
tion algorithms, sensitivity indications, or optimization of the
observation network.

Both parameter calibration and physical field description
can be formulated as inverse problems (Tarantola, 1987).
The formulation of inverse problems in hydrology fits into
a wider mathematical framework presented by Maclaughlin
and Townley (1996). Data assimilation combines model sim-
ulation and observational information of the system in order
to provide a better estimate of it (Ide et al., 1997; Bouttier
and Courtier, 1999; Kalnay, 2003). The benefit of data as-
similation has already been greatly demonstrated in meteo-
rology (Parrish and Derber, 1992; Rabier et al., 2000) and
oceanography (GODAE, 2009) over the past decades, espe-
cially for providing initial conditions for numerical forecast.
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Data assimilation is now being applied with increasing fre-
quency to hydrology (Thirel et al., 2010a,b) and hydraulic
problems with two main objectives: optimizing model pa-
rameters and improving stream flow simulation and forecast-
ing. Existing literature proposes several methods based on
a minimization technique (Atanov et al., 1999; Das et al.,
2004; Honnorat et al., 2007; Bessières et al., 2007). The
filtering approach, e.g. Kalman Filter or Monte Carlo algo-
rithms, also enables the estimation of roughness coefficients
(Sau et al., 2010; Pappenberger et al., 2005) and the correc-
tion of physical fields (Jean-Baptiste et al., 2010).

The present study describes the assimilation of river wa-
ter level observations and the resulting improvement in flood
forecasting. The data assimilation algorithm was built on top
of a one-dimensional hydraulic model describing the Saint-
Venant1 equations. The assimilation algorithm folds in two
steps: the first one was based on the assumption that the
upstream flow can be adjusted using a three-parameter cor-
rection, the second one consisted of directly correcting the
hydraulic state. The variables to correct are gathered in the
control vector; the control vector is indeed different in the
two previously described assimilation steps. For both steps,
a Kalman Filter algorithm was applied. In order to decrease
the cost of the data assimilation algorithm, the background
error covariance matrix for the second step was not propa-
gated by the dynamics of the hydraulic model. The impact
of the analysis and propagation steps in the Kalman Filter
in this matrix was emulated: anisotropic correlation func-
tions were used to represent the spatial error correlations for
water level and discharge. This choice results from the im-
plementation of the Kalman Filter algorithm on a simplified
hydraulic model (representing the diffusive flood wave prop-
agation equations). This demonstrates that the analysis and
dynamics of the physics turns a Gaussian correlation func-
tion into an anisotropic function at the observation point. The
data assimilation study with MASCARET was performed on
the Adour (France) and the Marne Vallage (France) catch-
ments. The improvement in river water level predictions,
using data assimilation, in analysis and forecast modes are
presented within this paper.

The outline of the paper is as follows: Sect. 2 describes
the assimilation system, paying particular attention to the
choice of the control vector for the data assimilation algo-
rithm. Two approaches to data assimilation were imple-
mented: the correction of the hydraulic state and the con-
trol of the upstream flow. The modeling of the background
covariances matrix and the parameterization used to control
the upstream flow are highlighted in this section. Section 3
provides the theoretical framework explaining the choice of
anisotropic correlation functions for the spatial error correla-
tions in the background error covariance matrixB. In Sect. 4,
the improvements in the river flood simulations and forecast-
ing are presented. The evaluation of the statistics describing

1Shallow water equations

the difference between the simulation results and the obser-
vations in re-analysis or forecast modes is used to illustrate
the assimilation scheme performance. A summary and a dis-
cussion are finally given in Sect. 5.

2 Context and implementation of the data assimilation

2.1 Modeling of the physics

MASCARET is a one-dimensional free surface hydraulic
model developed by EDF2 and CETMEF3, based on
the Saint-Venant equations (Goutal and Maurel, 2002).
MASCARET is widely used for modeling flood events, sub-
mersion waves resulting from the failure of hydraulic infras-
tructures, regulation of river infrastructures, and canal waves
propagation.

The conservative form of the one-dimensional Saint-
Venant equations reads:

∂S

∂t
+

∂Q

∂x
= qa,

∂Q

∂t
+

∂

∂x
(Q2/S)+gS

∂Z

∂x
= −

gQ2

SK2
sR

4/3
H

. (1)

In this formula the stream cross sectionS is expressed in
m2 and is, at each locationx, a function of the water height
h = Z(x,t)−Zbottom(x,t) whereZ(x,t) is the free surface
height in m andZbottom(x,t) is the bathymetry in m. The
discharge in m3s−1 is denoted byQ(x,t), qa(x,t) in m2s−1

is the lateral inflow per unit length,Ks is the Strickler coeffi-
cient,RH is the hydraulic radius andg is the gravity.

The unsteady kernel of MASCARET was used in this
study. Significant uncertainties in the input parameters of
MASCARET, such as the Strickler coefficient or the up-
stream flow and lateral inflow, result in errors in the simu-
lated water level and discharge. The aim of the data assim-
ilation approach is to reduce the uncertainties in either the
inputs or the outputs of the simulation.

2.2 The data assimilation method

The Kalman Filter (KF) approach (Gelb, 1974; Todling and
Cohn, 1994; Talagrand, 1997) identifies the optimal estimate
of the true value of an unknown variablex. This estimate
is optimal when its variance is at a minimum, meaning, for
Gaussian cases, that its probability density function is dense
around the mean. Suppose thatx is the control vector which
can include the hydraulic variables (water level and discharge
for MASCARET), the model parameters (Strickler coeffi-
cients), the boundary conditions (upstream flows), or the ini-
tial condition (initial water level and discharge), or a mix of
these. The solution of the KF algorithm is the analysis vector
xa. The a priori knowledge of the system is the background
vectorxb and the observation vector isyo. The background,
observation and analysis error covariances are respectively
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gathered in the matricesB, R and A. Assuming that the
background, the observation and the analysis are unbiased,
the analysis at timei can be formulated as a correction to the
background state defined as:

xa
i = xb

i +K i

[
yo

i −Hi(x
b
i )
]
, (2)

whereK i is the gain matrix,d i is the innovation vector

d i = yo
i −Hi(x

b
i ), (3)

andyi = Hi(xi) is the model equivalent of the observations,
generated by the observation operatorHi .

The KF analysis is optimal when the variance of its error
is at a minimum. Minimizing the variance of the error analy-
sis comes down to minimizing the trace of the analysis error
covariance matrix which leads to the formulation of the gain
matrix (Bouttier and Courtier, 1999):

K i = BiHT
i (HiBiHT

i +Ri)
−1. (4)

In this formulation,Hi is the Jacobian matrix ofHi in the
vicinity of the background statexb

i which can be written as:

Hi =
∂yi

∂xi

=
∂Hi(xi)

∂xi

. (5)

The analysis error covariance matrix reads

Ai = (I −K iHi)Bi . (6)

The analysis at timei is propagated in time by a dynamic
model which defines the background at timei +1:

xb
i+1 = Mi,i+1(x

a
i ), (7)

whereMi,i+1 represents the model propagation betweeni

andi +1.
The analysis error covariance matrix at timei is propa-

gated in time by the dynamic model in order to define the
background error covariance matrix at timei +1 (when the
model is assumed to be perfect):

Bi+1 = M i,i+1 Ai MT
i,i+1, (8)

whereM i,i+1 is the tangent linear approximation ofMi,i+1
in the vicinity ofxb

i .

2.3 Implementation of the assimilation scheme

The water levels simulated with MASCARET (or any hy-
draulic model), may be significantly different from the ob-
served water levels. A two step data assimilation algorithm
was implemented to account for some of the uncertainties in
the hydraulic model (inputs and outputs). The first step was
based on the assumption that the error in the simulated water
level was mainly due to an imperfect description of the up-
stream flows. The second step consisted of dynamically cor-
recting the water level and the discharge states for the entire
catchment (discretized inm cells) when observations were
available. The two-step data assimilation procedure over the
time window[0,Tr ] is described in Fig. 1.

2.3.1 Correction of the upstream flow

The first data assimilation approach is based on the assump-
tion that a considerable part of the error in the simulated
water level can be attributed to uncertainty in the upstream
boundary condition (usually deduced from water level ob-
servations through a calibration procedure). This first step is
described in the top part of Fig. 1. In order to control this
uncertainty with a data assimilation procedure, a large con-
trol vector which contains the discharge boundary conditions
at each time step of the simulation period, should be intro-
duced. This would result in a computationally expensive data
assimilation procedure, especially for the computation of the
Jacobian of the observation operator since the relation be-
tween the control space and the observation space is given
by an integration of the numerical model. In order to com-
pute the Jacobian of the observation operator, the numerical
model should be partially differentiated with respect to each
element of the control vector, hence the size of the control
vector should be reduced.

For this reason, the upstream flow forcingf was corrected
through a three-parameter linear transformation over a time
window (assimilation window[0,Tr ]):

f̃ (t) = af (t −c)+b. (9)

This parametric correction enables a simple and physical
control of the time series: homothetic vertical transformation
(a), shift in amplitude(b) and shift in time(c). For instance,
at the upstream stations, water levels are usually observed
and a rating curve (extrapolated for high discharge values)
is used to describe the discharge time series used by the hy-
draulic model. The parametersa,b,c allow for a correction
of the uncertainty related to the use of this rating curve. Ad-
ditionally, the parametric correction allows for the estimation
of an unknown intermediate input flow, accounting for influ-
ents that are not modeled in the hydraulic network.

For this approach, the control vector is composed of the
coeficientsa,b,c for each of theS upstream stationsxi =

(a1,b1,c1,···,as,bs,cs,···,aS,bS,cS). The characteristics of
this data assimilation approach are:

– The control parameters are assumed to be constant over
the time window over which the data assimilation is per-
formed. Since no models for the temporal evolution of
the parameters are described,Mi,i+1 = I in Eqs. (7) and
Eq. (8). For this reason, the indicei is dropped in the
following of the Sect. 2.3.1.

– The background values for the control parame-
ters arexb

= (ab
1,bb

1,c
b
1,···,a

b
s ,b

b
s ,c

b
s ,···,a

b
S,bb

S,cb
S) =

(1,0,0,···,1,0,0,···,1,0,0).

– The size of the background error covariance matrix
is (3× S)2. The errors in the background parame-
ters(ab

1,bb
1,c

b
1,···,a

b
s ,b

b
s ,c

b
s ,···,a

b
S,bb

S,cb
S) are assumed
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Fig. 1. Two-step data assimilation procedure flowchart on the time window[0,Tr].

to be uncorrelated and the variances are estimated statis-
tically to represent the variability of the upstream flow.

– The observation vector represents the water level at ob-
servation times at selected locations in the hydraulic
network. It is a vector of sizep wherep is the number
of observations over the data assimilation time window.

– The observation covariance matrixR is a p × p ma-
trix. Its diagonal terms are the observation error vari-
ances at the observation points, which are estimated
from statistics using several sets of measurements. The
off-diagonal terms are covariances between the observa-
tion errors at different observation points; these correla-
tions are assumed to be negligible since the observation
points are far enough from each other.

– The relation between the control space and the ob-
servation space is non-linear as it implies the integra-
tion of the numerical model. The observation opera-
tor Hup consists of two operations, the more costly of
which is the integration of the hydraulic model given
the upstream flow conditions over the assimilation win-
dow. The second operation is the selection of the cal-

culated water level at the observation points and at the
observation times.

– Hup(x
b) represents the water level at the ob-

servation points and times computed by MAS-
CARET using the background parameters
(ab

1,bb
1,c

b
1,···,as,bs,cs,···,a

b
S,bb

S,cb
S).

– The JacobianHup of Hup is the tangent linear of the
hydraulic model computed in the vicinity ofxb.

The Jacobian matrixHup can be approximated in the vicin-
ity of the backgroundxb as follows:

Hup(x
b
+1x) ≈ Hup(x

b)+Hup|b1x, (10)

whereHup|b is discretized using an uncentered finite differ-
ence scheme:

Hup,jk|b =
∂yj

∂xk

=
∂Hup,j(x

b)

∂xk

≈
Hup,j(x

b
+1x)−Hup,j(x

b)

1xk

=
1yj

1xk

. (11)

In this study,1yj is the change in water level at the observa-
tion stationj resulting from a change1xk in thek-th control



variable (as , bs or cs) with s ∈ {1,···,S}. The ability of the
observation operator to represent, in an approximate sense,
the response of the water level to changes in the control vec-
tor is a crucial tenet of this algorithm. The computation of
Hup requires an additional integration of the hydraulic model
for each control parameter. An efficient computation of the
operatorHup in the case of a larger control space was imple-
mented by Thirel et al. (2010a).

The small size of the control vector, as well as of the ob-
servation vector, enables the use of a KF algorithm involv-
ing matrix operations for the computation of the gain ma-
trix. Still, the algorithm relies on the hypothesis that the
observation operator can be approximated by a linear oper-
ator on the[xb, xa

] interval. The linearity of the hydraulic
model response to a perturbation in the control parameters
(ab

s ,b
b
s ,c

b
s ) (with s ∈ {1,···,S}) was investigated. The differ-

ence between the right hand side and the left hand side of
Eq. 10 should be quantified, and idealy should not exceed a
couple of percents, in order to assess the integrity of the lin-
earity assumption. It was found that the relation between an
upstream flow perturbation (of the form Eq. 9) and the hy-
draulic state response is reasonably approximated by a linear
function in the vicinity ofxb.

The implementation of this algorithm allows not only for
an improvement in the simulated water level within the as-
similation window but also for an improvement in the fore-
cast since, in forecast mode, the upstream flow is set equal to
the last analyzed value.

2.3.2 Correction of the hydraulic state

The second data assimilation approach consists of dynami-
cally correcting the water level and discharge states for the
entire catchment (discretized inm cells) when observations
are available (timei in Eqs.2 to 8). This second step is de-
scribed in the bottom part of Fig. 1. The observation vector
is kept the same as the one previously described but in this
case evaluated at a given timetobsi instead of over a time
window (in the following, the subscripttobsi is replaced by
the subscripti).

Here, the control vector at timei, is composed of
the discretized water level and discharge statesx =(
Zx1,···,Zxm,Qx1,···,Qxm

)
= (Z,Q).

The background state is given by a previous integration
of the modelM describing the Saint-Venant equations; it is
composed of the simulated water level and discharge vectors
and is denoted by

(
Zb,Qb

)
. The size of the control and the

background vectors is n= 2m.
In Eq. (7), Mi,i+1 denotes the propagation of the hy-

draulic state by the non-linear equation Eq. (1). In Eq. (8),
M i,i+1 denotes the tangent linear approximation ofMi,i+1.
In the application with MASCARET, as the computation of
M i,i+1 was too costly, the propagation of the background er-
ror covariance matrixBi was not explicitly implemented; it
was assumed thatM i,i+1 = I in Eq. (8) so thatBi+1 = B.

A parametrization for theB matrix was chosen to emulate
the propagation of the covariance function by the hydraulic
model. This parametrization, presented in Sect. 3, results
from the application of a full Kalman filter algorithm (where
Eq. (8) is solved) on a simplified propagation model with a
steady observation network. The propagated covariance ma-
trix from this application was then used as the invariantB
in the Kalman Filter algorithm for MASCARET. This algo-
rithm will be further referred to as IKF (Invariant Kalman
Filter). The background error matrix for this second step of
assimilation is denoted byBstep2in Fig. 1.

The background covariance matrix is an×n symmetric
positive-definite matrix that can be represented by blocks:

B =

(
BZ,Z BT

Z,Q
BZ,Q BQ,Q

)
.

Then×n diagonal blocksBZ,Z andBQ,Q represent respec-
tively the statistics of the errorsεZ in the water level and
εQ in the discharge. Its diagonals represent respectively the
variance of the background error in the water level and dis-
charge whereas the extra diagonal terms of these blocks are
the covariances between the error in the water level or dis-
charge at different locations on the grid. These covariances
are commonly defined asunivariateas opposed to themul-
tivariate covariances in the extra-diagonal blocks,BZ,Q and
BT

Z,Q, which represent the covariances between the errors in
the water level and the errors in the discharge.

The innovation vectord (Eq. 3) expresses the difference
between the observed water level and the simulated water
level at the nearest grid point. The observation operator
is a selection matrix with dimensions,p × n, denoted by
Hsel. In this study, the observation network is stationary,
thus the observation operator doesn’t vary over the assim-
ilation cycles, the indexi is then dropped in the follow-
ing. The water level correction vector at the observation
points, δ̃Z = (δ̃Z1,···,δ̃Zl,···,δ̃Zp) (with l ∈ {1,···,p}) is
the product of the innovation vector and the matrix product
HT

sel(HselBHT
sel+R)−1 in Eq. (4):

δ̃Z = HT
sel(HselBHT

sel+R)−1d. (12)

Water level correctionδZ over the entire domain results
from the multiplication of̃δZ by BZ,Z. The water level vari-
ances translate as uncertainties in the simulated water level.
An anisotropic correlation functionρ was used to describe
the spatial error correlations ofδZ as presented in Fig. 2.

In order to keep the anayzed control vector coherent
with the Saint-Venant equations, the discharge state should
be corrected along with the water level state. This was
done specifying multivariate error covariances inBZ,Q. The
discharge correction vector at the observation pointδ̃Q =

(δ̃Q1,···,δ̃Ql,···) with l ∈ {1,···,p}, was deduced from̃δZ
at the observation points using the local rating curve. Assum-
ing the rating curve can be formulated as

Qrc(Z) = αZγ
+β, (13)
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the discharge correction at the observation point reads:

δ̃Ql = Qb
l
Qrc,l(Z

b
l + δ̃Zl)−Qrc(Z

b
l )

Qrc(Z
b
l )

, for l ∈ [1,p] , (14)

whereQb
l andZb

l are thebackground values for the water
level and discharge at the observation points.

A calibration procedure was used to evaluate the coeffi-
cientsα,β,γ at each observation point. However, because of
the tidal influence at some observation points, the identifica-
tion of a bijective function (valid for both high and low tides)
was not always possible. In this case, the rating curve was
crudely approximated by the identity function, leading to

δ̃Ql =
Qb

l

Zb
l

δ̃Zl, for l ∈ [1,p] . (15)

As for the water level, the discharge correctionδQ for the
whole domain was determined from the multiplication of̃δQ

by BQ,Q. The correlation function and length forδQ are the
same as those used forδZ.

2.3.3 Cycling of the analysis

The two previously described assimilation approaches are se-
quentially applied over the period covering a flood event as
described in Fig. 1. The assimilation is performed over a
four-day sliding window, also referred to as a cycle, with
three days of re-analysis and one day of forecast. The last
observation time from which the forecast integration starts is
the reference timeTr. The sliding window is shifted every
hour and a new assimilation performed. The forecasted state
at Tr is stored and used as the initial state for the following
cycle. For the first three days of the event, the simulation
starts from a standard state for water level and discharge.

The implementation of the two-step assimilation and fore-
cast procedure is schematically represented in Fig. 3. Over
the four-day assimilation window, a free run integration of
the model is achieved (black curve). The upstream flow cor-
rection – correction of the parameters(a,b,c) – is computed
using observations from the second and the third days (blue
dots). The observations from the first day are not used as the
model is potentially not adjusted yet. The resulting analyzed
parameters are used to correct the upstream flows over the
first, second and third days.This is the first step of the analy-
sis. The updated upstream flows are then used for a new inte-
gration of the model (starting from the beginning of the four-
day window), providing a new integration. This integration
(green curve) is intermediate as it describes the background
state for the hydraulic state correction procedure. During the
third day of the integration, at each observation time, the wa-
ter level is adjusted; this correction is instantaneous and cor-
respond to the second step of the analysis. The model is then
integrated starting from the corrected state at the current ob-
servation time to the next observation time, leading to a dis-
continuous description of the hydraulic state (discontinuous
red curve). In this study, the observation time step is equal
to the model time step so that the resulting integration is no
more discontinuous than any other model integration.

For each cycle, beyond the reference time, the upstream
flows are kept constant and the initial condition for the fore-
cast is given by the analysed water level and discharge states
atTr.

The data assimilation algorithm was implemented using
the PALM (Parallel Assimilation with a Lot of Modularity,
Lagarde, 2000; Lagarde et al., 2001) dynamic coupler devel-
oped at CERFACS. This software was originally developed
for the implementation of data assimilation in oceanography
for use with the MERCATOR project. PALM allows for the
coupling of independent code components with a high level
of modularity in the data exchanges and treatment while pro-
viding a straightforward parallelization environment (Fouil-
loux and Piacentini, 1999; Buis et al., 2006).

3 Modeling of B

As explained in Sect. 2.3.2, when the Kalman Filter algo-
rithm is applied to correct the hydraulic state computed by
MASCARET, the explicit propagation of the background er-
ror covariance matrix is not implemented because the com-
putation of the tangent linear of the model is too costly. The
covariance functions initially described inB are kept con-
stant instead of being propagated by the dynamic model. For
that reason, it is crucial to model covariance functions that
account for some of the physics of the dynamic model, rather
than Gaussian functions.

The objective of the present Section is to provide a
parametrization for theB matrix that emulates the propaga-
tion of the covariance function by the hydraulic model. In
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order to find such a parametrization, an initially Gaussian
covariance function is used by a full Kalman Filter algorithm
applied to a simplified dynamic model. For the simplified
model, which will be described in Sect. 3.1 (diffusive flood
wave approximation), the analysis and propagation steps of
the Kalman Filter are achieved since the computation of the
tangent linear for a diffusive flood wave propagation model
on a restricted spatial domain is reasonable. With this exper-
iment, it will be demonstrated that the analysis and propaga-
tion steps of the Kalman Filter modify the covariance func-
tion at the observation point. As will be shown in Sect. 3.2,
the resulting covariance function at the observation point is
anisotropic, with a shorter correlation length downstream
of the observation point than upstream. A validation step
for this parametrization will be performed with the diffusive
flood wave propagation model in Sect. 3.3. In this section,
an anisotropic covariance function will be described for the
IKF and the results of the assimilation will be compared to
those of the IKF with a Gaussian covariance function. It will
be shown that the emulation of the dynamics of the model
with a parametrized covariance function for the IKF is then
equivalent to the full KF.

These parametrization and validation exercises seek to jus-
tify the choice of an anisotropic covariance function at the

observation points as opposed to Gaussian functions. This
result will later be used to model the background error co-
variance function for the hydraulic state correction proce-
dure performed on MASCARET with IKF as represented in
Fig. 1.

3.1 The diffusive flood wave approximation

In this study, it is to assumed that the solution of the propa-
gation of a given initial condition by the MASCARET equa-
tions is close to the one propagated by the diffusive flood
wave approximation equations. More precisely, it is assumed
in the following, that the covariance function of a signal (and
thus its correlation lengthl) propagated by MASCARET is
similar to the covariance function of the same signal propa-
gated by the diffusive flood wave approximation equations.

In the framework of the diffusive flood wave approxima-
tion (S(x,t)= Lh(x,t), whereL is a constant river width),
the diffusive Saint Venant equations (Eq. 1) of MASCARET
can be crudely approximated as

∂h̃

∂t
+

5Un

3

∂h̃

∂x
= κ

∂2h̃

∂x2
, (16)



whereQ = hU , h = hn+h̃ andU = Un+Ũ , with (̃h,Ũ ) rep-
resenting small perturbations to the equilibrium(hn,Un) and
κ =

Unhn

2tanγ for a constant slopeγ . The state(hn,Un) is such

thatUn = KsI
1/2h

2/3
n is a solution of the flood wave approx-

imation equations, whereI = sinγ . The equilibrium state
(hn,Un) for the diffusive flood wave propagation model is
chosen as a representative mean state for the following sim-
ulations with MASCARET over each catchment. Eq. (16) is
a classical advection-diffusion equation whereκ is the diffu-
sion coefficient andc =

5Un

3 is the advection speed. In order
to use this model as a support for data assimilation, an open
boundary condition for Eq. (16) is imposed downstream with
∂h̃
∂t

(L,t)+c ∂h̃
∂x

(L,t) = 0. The upstream boundary condition
is imposed bỹh(0,t)= q̃(t), whereq̃ is a random Gaussian
function of zero mean< q̃ >= 0. The auto-correlation func-
tion of q̃(t)

R(τ) =< q̃(t )̃q(t +τ) >= δq2
mexp

(
−

τ2

2l2q

)
(17)

is assumed to have the shape of a Gaussian function. Using
the theory of random function diffusion, the spatial covari-
ance function of̃h(x,t) can be approximated by a Gaussian
function.

3.2 Kalman Filter algorithm applied to the diffusive
flood wave propagation model

The Kalman Filter algorithm was implemented on the 1-
D diffusive flood wave propagation model described by
Eq. (16), using the identical-twin experiment framework
(also known as OSE4). The identical-twin experiment was
set up witht ∈ [0,T ] andx ∈ [0,L]. The 1-D domain was
discretized inm cells and Eq. (16) was integrated using an
explicit Euler scheme in time and a first order centered finite
difference scheme in space. A reference run was integrated
using a set of parameters and forcing(ctrue,κtrue,q̃true(t)), to
simulate thetruewater level̃htrue. The observatioñhobs(t) =

h̃true(t)+ εo(t) was calculated in the middle of the 1-D do-
main (xobs=

L
2 ) where εo(t) is a Gaussian noise defined

by its standard deviationσo. The background trajectory
hb(x,t) was integrated using a perturbed set of parameters
and forcing(cper,κper,q̃per(t)) where< q̃per(t )̃qper(t +τ) >=

δq2
m,perexp(−τ2

2l2q
).

In this context, the background error covariance matrix
was updated by the analysis and propagated in time, to the
next observation time, by the tangent linear of the diffusive
flood wave propagation model (Eqs. 7–8). As a consequence,
the gain matrix evolves over the assimilation cycles.

As described in Sect. 3.1, the initial covariance function
at the observation point, for the signalh̃(x,t), is close to
a Gaussian as represented in black in Fig. 4. Appendix A
describes how this isotropic covariance function is modified
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Fig. 4. Initial Gaussian background error covariance function (black
curve) and anisotropic background error covariance function (red
curve) from KF, at the observation point.

along the assimilation cycles by the analysis and propagation
steps of the Kalman Filter algorithm. Considering a steady
observation network, the shape of the covariance function
converges to an anisotropic function as represented in red in
Fig. 4. The covariance between the observation point and
its neighbours is reduced since information at the observa-
tion point was introduced at this location by the analysis pro-
cedure through the innovation vector. The background er-
ror covariance matrix for the next assimilation cycle results
from the propagation of the previous cycle analysis error co-
variance matrix by the tangent linear of the modelM and its
adjointMT as formulated in Eq. (8). After several KF cycles,
the covariance function at the observation point is character-
ized by a shorter correlation length scale downstream of the
observation point than upstream (see Appendix A for further
details).

3.3 Invariant Kalman Filter algorithm applied to the
diffusive flood wave propagation model

The covariance function computed with the Kalman Filter
algorithm in Sect. 3.2 was used to parameterize the invariant
covariance function of the IKF; here applied to the diffusive
flood wave propagation model, for validation. The results of
the IKF using this parametrisation ofB will be compared to
those of a IKF using an isotropic Gaussian function.

By default, the spatial correlations inB are represented by
the Gaussian function

ρ(x,x′) = exp

[
−

(x −x′)2

2lB(x,x′)

]
(18)

meaning thatB(x,x′) = σ 2
b ρ(x,x′). The lengthlB(x,x′), is

an isotropic function ofx andx′ which represents the local



correlation length for the pair(x,x′). For this study, only the
correlationsρ(x,xobs) between the errors atxobs and the rest
of the domain are relevant. The lengthlB(x,xobs) is assumed
to depend only on the observation location and is denoted
by l(xobs).

Figure 5a, b, c shows the truẽht , the non-assimilated
h̃s, backgroundh̃b and analysed̃ha water level state over
the 1-D domain att = T = 500× 103 s where the analysis
is performed every1t = 10×103 s, for different functions
lB(x,xobs). When lB(x,xobs) = l(xobs) for all x (Fig. 5a),
the data assimilation corrects the water level over the in-
terval [xobs− l(xobs)/2,xobs+ l(xobs)/2]. Still, the analysis
(red curve) is closer to the true state (blue dotted curve) than
the background (green curve) only upstream of the obser-
vation point. To the contrary, whenlB(x,xobs) = l(xobs)/10
for all x, in Fig. 5b, the analysis is closer to the true state
only downstream of the observation point. Finally, as it ap-
pears in Fig. 5c, a better fit to the true state is obtained with
an anisotropic functionρ(x,xobs) as predicted by the full
Kalman Filter algorithm. An optimal value for the reduction
factor of the length scale was identified by trial and error; the
best results were obtained with

l− = lB(x,xobs) = l(xobs) whenx <xobs,

l+ = lB(x,xobs) = l(xobs)/10 whenx >xobs.
(19)

3.4 Parameterization of the covariance function for the
MASCARET application

The application of a full Kalman Filter on a diffusive flood
wave propagation model enabled the understanding of the
impact of the analysis and the physics on an initial Gaus-
sian correlation function. It was shown that the correlation
length scale is reduced downstream of the observation point
and that the initial Gaussian correlation function evolves into
an anisotropic correlation function. These results were used
to model the correlation function for the water level and dis-
charge computed in the MASCARET data assimilation pro-
cedure. An approximate reduction factor of ten was applied
between the correlation lengths upstream and downstream of
the observation points.

In order to complete the modeling of the background er-
ror covariance function, the value of the correlation length
l(xobs) was then estimated. The estimation of the correla-
tion length of the spatial correlation function for the errors
in the water level and the discharge simulated with MAS-
CARET occured in two steps. First a diffusion coefficientκ

based on the dynamics of the diffusive flood wave approxi-
mation model (Eq. 16) was graphically estimated by study-
ing the propagation of a perturbation of the hydraulic state.
Then, this diffusion coefficient was used to formulate the
spatial correlation length of the state perturbation covariance
function. This procedure was used to predict the correlation
length at each observation point for the data assimilation in

MASCARET. The details for the estimation of the correla-
tion lengthl(xobs) are given in Appendix B.

4 Results of the IKF analysis

4.1 Experimental procedure

4.1.1 Description of the catchments

The Adour maritime catchment area is located in Southwest-
ern France, from the Pyrenean Piedmont to the Aquitain
coast. The drainage area (16 890 km2) covers the departe-
ments of Atlantic Pyrenees and Landes. The Adour river
rises in the Pyrenees at an altitude of 2600 m and reaches
the Atlantic ocean at Bayonne 312 km further. The Adour
catchment is one of the wettest in France due to heavy precip-
itations in the upper part of the basin. The Adour catchment
is divided in two regions: the mouth of the river which is
mostly influenced by the tide and the upstream region which
is mostly influenced by influents. A schematic description of
the Adour catchment is shown in Fig. 6. The Adour river
has three main influents (responsible for 65% of the total
discharge at Bayonne during flood conditions). The Gaves
de Pau and d’Oloron, respectively draining 5226 km2 and
608 km2, are often affected by flash floods and join with the
main influent of the catchment Gave Réunis. The Nive drains
980 km2 and joins up with the Adour close to Bayonne.

The hydrological data at the upstream stations (Dax, Es-
cos, Orthez and Cambo-les-bains) are provided in real time
by the SPC5. The discharge time series are used as boundary
conditions for the hydraulic model. The maritime boundary
conditions are given by the SPC tide gauge located in the
estuary. Tide forecasts are given by the SHOM6. The un-
certainty in the maritime boundary condition is smaller than
that in the hydrological upstream station, as a consequence,
only upstream stations were controled by the data assimi-
lation algorithm. Sensitivity tests revealed that the tangent
linear model (Eq. 11) is valid for a pertubation up to 20 %
in a, 6 m3s−1 in b and 6 h inc. Additionally, tide gauge ob-
servations located at Lesseps, Urt and Peyrehorade stations
display the water level every five minutes or hourly. These
observations were used for the data assimilation process. The
correlation lengths were set, using the procedure described
in Sect. 3, to 20 km, 6 km and 34 km at Peyrehorade, Urt and
Lesseps, respectively.

The Marne Vallage catchment is located East of the Paris
basin. The Marne river is the main influent of the Seine river
and is 525 km long. This study focuses on the Marne Val-
lage drainage area that lies between Condes and Chamouil-
ley. This karstic basin is characterized by slow flood rises,
long flooding periods and a strong sensibility to local precip-
itations. The Marne river has two main influents, of which

5Service de Pŕevision des Crues
6Service Hydrographique et Océanographique de la Marine
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the Rognon is responsible for 50 % of the Marne discharge.
A schematic description of the Marne Vallage catchment is
shown in Fig. 7. The hydrological data at the upstream sta-
tions (Condes and Saucourt) are provided in real time by
the Champagne-Ardenne DIREN. The downstream bound-
ary condition in Chamouilley is described by a rating curve.
Only the upstream stations were controled by the data assim-
ilation algorithm. Sensitivity tests revealed that the tangent
linear model (Eq. 11) is valid for a pertubation up to 20 % in
a, 6 m3s−1 in b and 6 h inc. The hourly tide gauge obser-
vations at Joinville and Chamouilley were used for the data
assimilation procedure. The correlation lengths were set, us-
ing the procedure described in Sect. 3, to 51 km and 55 km at
Joinville and Chamouilley, respectively.

In this study, the observed water level reached a maximum
of several meters and the observation error standard devia-
tions were set to 0.1 m. The observation error covariances
were neglected, assuming that the observation stations are
far enough apart for the spatial errors to be weakly corre-
lated. The background error variances were chosen to be two

to three times larger than the observation error variances. At
each observation point, only the observations above a mini-
mum value were taken into account for the assimilation pro-
cess in order to avoid representativeness errors. The observed
values that were found to be too far from the simulated val-
ues were not assimilated; thus was accomplished by applying
a threshold to the misfit between the observed and the simu-
lated water levels.

The MASCARET model was chosen by the SCHAPI7

to simulate the physical processes of the study catchments.
A preliminary calibration procedure of several model pa-
rameters was performed by the SCHAPI and the SPC us-
ing data from twelve flood events of varying intensity. The
geometry of the hydraulic network, the computation time
step and the Strickler coefficient were adjusted so that the
flood events were, on average, well represented at the ob-
servation stations. Globally, at Peyrehorade (Adour), the
simulation tends to overestimate the flood peak for extreme

7Service Central d’Hydroḿet́eorologie et d’Appuìa la Pŕevision des Inondations
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Fig. 6. The Adour catchment with the measurement stations in red and the upstream stations in blue.

flood events and underestimate the flood peak for moder-
ate events. In the Marne catchment, a constant lateral in-
flow was ajusted so that the flood events were, on average,
well represented at Joinville and Chamouilley. The simulated
water levels at Joinville were globally correct, though often
overestimated while the flood peak was often underestimated
at Chamouilley.

4.1.2 Criteria for the interpretation

The baseline scenario was chosen as the simulation without
assimilation (Free run). A post-treatment scenario for the
Free run forecast was also explored: at the reference time
Tr, the increment between the observation and the Free run is
computed and added to the Free run water level. A correction
that linearly decreases to zero over a 6-h forecast period is
then applied. This post-treatment correction scenario (Interp
run) allows for a perfect fit with the observation atTr, for the
water level at the observation locations. By construction, the
Interp run merges with the Free run after 6 h of forecast.

The comparison of the Free run, Interp run and assimila-
tion run (Assim run) with the observation was performed at
the observation locations and times for the water level. The
difference between the simulation and the observations is de-
noted by MmO (Model minus Observation) where the model

run is either the Free run, the Interp run or the Assim run.
MmO is computed at a given lead time in re-anaysis and fore-
cast: 24 h before the reference time, and hourly, up to 12 h,
after the reference time. The mean and standard deviation
of MmO, respectively denoted by C1 and C2, are computed
over the analysis cycles, at each observation station and for
each flood event. The criteria C3 (in %) is defined as

C3=
100

Nobs

Nobs∑
1

|
hM

−hobs

hobs
|, (20)

whereNobs is the number of observations over a period of
time andhM is the simulated water level for either the Free
run, the Interp run or the Assim run. C3 is a cumulative
criteria as opposed to C1 and C2.

In practical terms, when the simulation is close to the ob-
servations, the criteria C1, C2 and C3 are small. C1, C2 and
C3 were computed for the Free run, the Interp run and the
Assim run. The percentage of reduction for each criteria was
computed twice: (1) comparing the Free run and the Interp
run and (2) comparing the Free run and the Assim run.
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4.2 Flood events simulation with data assimilation

4.2.1 Interpretation of the November 2002 event in the
Adour catchment

Figure 8 shows the water level over a four-day period (Day 19
to Day 22 of a flood event starting 2 November 2011) at the
observation station at Peyrehorade in the Adour catchment.
The reference time for this cycle isTr = Day 22. The Free
run integration of MASCARET starting from a previously
calculated state is plotted in black and the hourly observa-
tions are plotted in blue. The difference between these two
curves reaches 15 % of the observation at the beginning of
Day 22. The assimilation procedure was applied to improve
the water level over the first three days (re-analysis period)
as well as over the forecast period (Day 22). The analysis
with the instantaneous correction of the water level (green
dashed curve) shows an excellent fit with the observations
over the re-analysis period but leads only to a minor improve-
ment over the forecast period. The model is constrained to
the observed state by the hydraulic state correction procedure
from Day 19 to Day 22. Though the analyzed state is al-
most equal to the observed state at the beginning of Day 22,

over the forecast period, the analysis remains far from the
observation. This shows that the improvement of the initial
condition at the reference timeTr = Day 22 is not enough to
improve the simulation during the following day. The im-
provement is only significant over a couple of hours as the
simulation is also degraded by other uncertainties. The anal-
ysis after the correction of the upstream flow (green curve)
shows a good fit with the observation over the re-analysis
period as well as over the forecast period. The difference
with the observation only reaches 9 % of the observed value
at Day 22.5. The upstream flow was corrected over the two-
day period (Day 20 to Day 22) allowing for a better simu-
lation of the water level over this period. Additionally, over
the forecast period, the upstream flow is held equal to the last
analysed value (which is better than the non-analysed one)
allowing for an improvement in the water level simulation
during Day 22. In summary, the water level hydraulic state
correction procedure plays a major role in the re-analysis
mode and the upstream flow correction plays a major role
in forecast mode. The analysis after the two-step assimila-
tion procedure is plotted in red and shows an improvement
over the re-analysis period as well as during the forecast pe-
riod. It should be noted that after a couple of hours of fore-
cast, only the upstream flow correction is still effective as the
green curve merges with the red curve.

For this event, the two-step analysis was cycled every hour
(Tr varies from Day 18 to Day 26) so that, at an observation
point, the water level is forecasted over the whole flood event.
Fig. 9 shows the six-hour forecast for the Free run (black
curve) and the Assim run (red curve) as well as the non as-
similated observations (blue curve). For this lead time, the
average C3 criteria for the flood event is 4.98 % for the Free
run and 2.21 % for the Assim run, meaning that this criteria
is improved by 55 % with the two-step data assimilation al-
gorithm. For the Interp run, the average C3 criteria is equal
to 3.5 % and is only improved by 29 % when compared to the
Free run. At a six-hour forecast range, on average over the
flood event, the assimilation procedure brings the simulation
significantly closer to the observation. The accuracy of the
assimilation procedure was therefore found to be better than
the accuracy of the post-treatment procedure (Interp run).

Figure 10 displays the criteria C3 for the flood event
at Peyrehorade, computed 24 h before the reference time
(dashed curves) and 6 h after the reference time (solid
curves), for the Free run (black curves) and the Assim run
(red curves). It appears that during the re-analysis and the
forecast period, the assimilation procedure brings the analy-
sis closer to the observations than the Free run. As expected,
C3 remains larger in forecast mode than in re-analysis mode
because of the uncertainties in the boundary conditions at the
controlled upstream stations (as well as other boundary con-
ditions such as the maritime water level forcing as forecasted
by tide models at SHOM).
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4.2.2 Interpretation of the April 2006 event in the
Marne catchment

The two-hour and the six-hour forecasted water levels in the
Marne Vallage catchment, at Joinville, for the April 2006
event are presented in Figs. 11 and 12, respectively. The Free
run significantly overestimates the flood peak at Joinville and
Chamouilley (not shown) however the two-step data assimi-
lation procedure allows for a good simulation of the peak at
the two-hour forecast. The simulated peak at the six-hour
forecast is also in better agreement with the observations
than the Free run, though an overestimation of the peak re-
mains. For the 2-h forecast, the average C3 (for the whole
flood event) was improved by 35 % at Joinville and 32 % at
Chamouilley. For the 6-h forecast, the average C3 was im-
proved by 33 % at Joinville and 26 % at Chamouilley. During
this flood event in forecast mode, the assimilation procedure
brings the simulation significantly closer to the observation.
It should be noted that in Figs. 11 and 12, the Assim run
merges with the Free run when all the observations are under
a minimim value as explained in Sect. 4.1.1.

Further analyses were carried out for flood events in the
Marne Vallage catchment. Globally, the results were not as
satisfying as in the Adour catchment. The main reason for
this dampened performance is an incomplete calibration of
the numerical model (namely for the Strickler coefficient and
lateral input flow) in the Marne Vallage catchment before the
assimilation procedure. It was shown during some events,

that in order to improve the simulation at one observation
station, the data assimilation algorithm must degrade the sim-
ulation at the other observation location. The application of
the two-step data assimilation procedure enabled the detec-
tion of a model incoherence in the Marne Vallage that could
not be satisfactorily accounted for with the present control
vector. Further work towards the improvement of the cali-
bration of the model for the Marne Vallage catchment is on-
going at the SPC Seine-aval Marne-amont and will be used
with the data assimilation procedure when available.

4.2.3 Statistical interpretation

Figure 13 shows that the forecasting ability of the model with
data assimilation decreases with lead time. The mean reduc-
tions in criteria C1, C2 and C3 between the Free run and the
Assim run (red curves) as well as between the Free run and
the Interp run (black curves) were computed over seven flood
events in the Adour catchment, at Peyrehorade. The dashed-
dotted, dashed and solid curves represent the improvement
in C1, C2 and C3 respectively. The two-step assimilation
algorithm improves C1 by 72 % and C2 by 67 % at the refer-
ence time where as the Interp scenario improves C1 and C2
by 100 % as the simulated water level is literally corrected to
the observed values atTr. The improvement of C3 over the
first hour of forecast with the two-step assimilation algorithm
is 60 % and 70 % for the Interp scenario. Even though the In-
terp scenario gives the best results at short forecast range (up
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Table 1. C1, C2, C3 improvement between Free run and Assim run
over the twenty four hours before the reference time. Average of
seven flood events in the Adour catchment, at Peyrehorade, Urt and
Lesseps.

−24 h re-analysis (Adour) Peyrehorade Urt Lesseps

C1 improvement (%) 72 60 54
C2 improvement (%) 67 58 50
C3 improvement (%) 80 65 54

Table 2. C1, C2, C3 improvement between Free run and Assim run
over the six hours after the reference time. Average of seven flood
events in the Adour catchment, at Peyrehorade, Urt and Lesseps.

+6 h forecast (Adour) Peyrehorade Urt Lesseps

C1 improvement (%) 15 15 0.5
C2 improvement (%) 13 11 0
C3 improvement (%) 36 25 3

to 3-h forecast), it should be kept in mind that this scenario
only corrects the water level at observation locations and thus
describes a hydraulic state that is not coherent with the phys-
ical equations. In this case, water level state is discontinuous
in space and discharge values are not corrected according to
water level values. Therefore, the resulting hydraulic state
from the Interp run can not be used as an initial condition for
a forecast integration of the MASCARET model. Addition-
ally, the improvement of C1 and C2 for the Interp run is neg-
ligible for a lead time equal 6 h and above (by construction)
whereas the improvement with the assimilation approach re-
mains between 13 % (at +6 h) and 4 % (at +12 h). For a lead
time equal to 3 h and above, the improvement in C3 is signif-
icantly larger with the two-step assimilation approach than
with the post-treatment approach.

The average improvement of C1, C2 and C3 was computed
for each observation station in the Adour catchment (over
seven events) and in the Marne catchment (over four events)
showing that the overall effect of the assimilation improves
the description of the water level and discharge for all the
observation stations.

The improvement in C1, C2 and C3 is displayed in Table 1
for the three Adour stations (Peyrehorade, Urt and Lesseps)
for the 24 h before the reference time and, in Table 2, for the
6 h after the reference time. For the three stations, the cri-
teria were improved, with the improvement being larger in
re-analysis mode than in forecast mode. The evaluation of
the criteria at Urt and Peyrehorade are similar as both sta-
tions are influenced by hydrological conditions. The Lesseps
station which is closer to the maritime boundary, is signif-
icantly influenced by the tides that are not controled; as a
consequence, the results of the assimilation are not as good
at Lesseps as at Peyrehorade and Urt.

Table 3. C3 improvement between Free run and Assim run over
the twenty four hours before the reference times and the six hours
after the reference time. Average of four flood events in the Marne
catchment, at Joinville and Chamouilley.

C3 improvement (%) Chamouilley Joinville

−24 h re-analysis 41 24
+6 h forecast 24 10

The improvement in C1 is shown in Table 3 for the two
Marne stations (Joinville and Chamouilley) for the 24 h be-
fore the reference time and for the 6 h after the reference
time. Again, for both stations, the criteria are improved and
the improvement is larger in re-analysis mode than in fore-
cast mode. Still, the improvement at the Marne stations is
smaller than that described at the Adour stations, especially
at Joinville. As previously stated, the calibration of the model
parameters for the Marne catchment should be revised. For
example, a lateral inflow could be added to represent addi-
tional inputs from the karstic drainage area. With a more
physical model for the Marne catchment, the two-step data
assimilation algorithm would then lead to better results.

5 Summary and conclusions

This paper presented the improvement in river flood forecast-
ing when assimilating water level observations. The study
was carried out with the one-dimensional hydraulic model
MASCARET, on the Adour and Marne Vallage catchments.
Representative events were presented for both catchments
and statistics of the results were computed. The water level
data were assimilated using a Kalman Filter algorithm to
control the upstream flow and dynamically correct the hy-
draulic state. The first step of the analysis was based on
the assumption that the upstream flow can be adjusted us-
ing a simple three-parameter correction. These three control
parameters were adjusted over a two-day time window af-
ter one day of free run. The second step of the assimilation
consisted of correcting the hydraulic state every hour (the
observation frequency) during one day. The simulation was
then integrated in forecast mode for an additional day. With
this algorithm, the background error covariance matrix is not
explicitly propagated by the dynamics of the system. Still,
a particular effort was made to model background error co-
variance functions which were coherent with the dynamics of
the hydraulic model. Anisotropic functions were used to rep-
resent the background error spatial correlations for the water
level and the discharge, respectively. The justification for this
choice was made by applying a full Kalman Filter algorithm
on a diffusive flood wave propagation model. It was shown
that the analysis turns a Gaussian correlation function into an
anisotropic correlation function where the correlation length
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scale is shorter downstream of the observation point. This ap-
proach enabled a realistic modeling of the spatial error corre-
lations for the data assimilation algorithm with MASCARET.

This procedure was applied on a four-day sliding window
over the entire period of each flood event. It was shown that
the simulation with data assimilation is significantly closer to
the observation than the free run over the re-analysis period
as well as over the forecast period. This conclusion is evi-
denced by the fact that the mean and standard deviation of
the distance between the simulation and the observation at a
given time (as well as the sum of this difference over a time
period) are reduced by the data assimilation procedure. It
was shown that the instantaneous correction of the hydraulic
state leads to a significant improvement in re-analysis mode
and for short forecast range. It was also shown that the sensi-
tivity to an initial condition for the forecast mode is negligi-
ble compared to the sensitivity to the upstream flow, except
at very short forecast range. For this reason, the upstream
flow correction leads to a larger correction in forecast mode.
On average, the correction of the hydraulic state is not as
predictive as the upstream flow correction and is not suffi-
cient to constrain the simulation over an interesting forecast

period. This justifies the need for the two-step data assimi-
lation approach. This two-step procedure was applied to the
Adour and Marne catchments (France) and the results were
interpreted for several events in each catchment.

The assimilation procedure presented in this paper could
potentially be applied to other catchment areas. Yet, a care-
ful estimation of the data assimilation statistics must be car-
ried out as they are representative of the local physics. The
relation between the water level and discharge errors should
also be further investigated. This aspect would be enriched
by the use of local(Z,Q) calibration functions. Addition-
ally, the approximation of a state independent background
error covariance matrix, was validated with the flood wave
propagation model. Further work could be done to assess
the integrity of this assumption using the Saint-venant equa-
tions model. Also, the impact of the observation frequency
and the observation error statistics could be investigated: on
going work suggests that when the observation frequency is
low, the propagation of the covariance function is negligible
and the covariance matrix remains state independent. Be-
yond this study, the extension of the control space could be
useful as other sources of uncertainties or model errors (for



example the simplification of the flood plain representation)
result in errors in the hydraulic state. For example, the cor-
rection of the Strickler coefficients or of the lateral discharge
could be investigated.

Appendix A

Evolution of the local covariance functions with the
Kalman Filter algorithm in a 1-D diffusive flood
wave propagation model.

The Kalman Filter algorithm was implemented on a 1-D dif-
fusive flood wave propagation model and the covariance ma-
trices were updated following Eqs. (7–8).

The initial background covariance matrix8 Bc1 was mod-
eled by spatially constant variances and correlation lengths
for a Gaussian correlation function. For this analy-
sis, σ 2

b (x) = 0.25 for all x. The covariancesBc1(x1,x),
Bc1(x2,x) andBc1(x3,x) between respectivelyx1,x2,x3 and
any pointx are displayed in Fig. 14a (x2 is the observation
point in this example). It should be noted thatBc1(xi,xi) =

σ 2
b (xi) = 0.25 for i ∈ {1,2,3}. By construction,Bc1 is sym-

metric and isotropic.
After one assimilation cycle, the error covariances are lo-

cally modified. The analysis error covariances inAc1 are
computed from Eq. (6) and shown in Fig. 14b forx1, x2 and
x3. It should be noted that, as expected, the analysis error
varianceσ 2

a at the observation pointx2 is smaller thanσ 2
b . At

the observation point, the covariance functionAc1(x2,x) re-
mains isotropic. Conversely, at the upstream pointx1 and at
the downstream pointx3, the covariance functionsAc1(x1,x)

andAc1(x3,x) are anisotropic. The covariance betweenx1
and the observation pointx2, as well as betweenx3 and the
observation pointx2, is reduced since information at the ob-
servation point was introduced at this location by the analy-
sis procedure through the innovation vector. The covariance
functions atx1 andx3 are isotropic aroundx2. It should also
be noted that the analysis covariance matrix modeled with
the represented covariance function is symmetric, for exam-
ple,Ac1(x1,x2) = Ac1(x2,x1) = 0.0057; these two values are
represented by dots in Fig. 14b.

The background error covariance matrixBc2 = MT Ac1M
for the next (the second so far) assimilation cycle is com-
puted from Eq. (8), meaning that the previous cycle analysis
background covariance matrix is propagated by the tangent
linear of the modelM and its adjointMT .

The columns of the updatedBc2 for x1, x2 and x3 are
shown in Fig. 14c. The anisotropic covariances and corre-
lation functions at all the upstream and downstream loca-
tions were propagated to the observation points so that the
covariance and correlation functions become anisotropic at
the observation point. The spatial covariances inBc2 for

8The subscriptci denotes the number of the assimilation cycles

xobs, hereBc2(x2,x), for this second assimilation are fun-
damentally different from those initially described inBc1
for the first assimilation, hereBc1(x2,x). Still, the sym-
metric property of the covariance matrix is conserved and
Bc2(x1,x2) = Bc2(x2,x1) (these values are represented by
dots in Fig. 14c). The initially described isotropic correlation
function at the observation pointx2 has been modified into a
local and anisotropic function. At the observation pointx2,
the correlation function is anisotropic with a shorter correla-
tion length downstream than upstream.

Figure 15a represents the diagonal terms of the first anal-
ysis covariance matrixσ 2

a (x) = Ac1(x,x) (in red dashed
curves) and the second background covariance matrix
σ 2

b (x) = Bc2(x,x) (in black dashed curves). As expected,
the analysis error variance is smaller than the initial back-
ground error variance (Bc1(x,x) = 0.25) in the vicinity of the
observation point. The size of the area is controled by the
correlation length initially described inBc1. The variances
which were initially set to the spatially constant value 0.25
are now local, for exampleσ 2

b (x2) = 0.0497 andσ 2
b (x1) =

0.2474. Additionally, the variances in the updatedBc2 (in
black dashed curves) are also local, they correspond to the
propagation of the variances inAc1 by M and its adjointMT .
The update of the background error covariances by the anal-
ysis and the propagation of the background error covariances
matrix by the tangent linear model consists of the evolution
of both the variances and the correlations. It appears that the
correlation lengths tend to shorten downstream of the obser-
vation point. After several iterations (7 in this example) of
the Kalman Filter, the variances are globally reduced down-
stream of the observation point as shown in Fig. 15a forAc7
andBc8. Effectively, the uncertainty at the observation point
is reduced by the data assimilation algorithm, allowing the
information to be propagated downstream.

The covariancesAc7(x1,x), Ac7(x2,x) andAc7(x3,x) be-
tween respectivelyx1,x2,x3, after seven iterations of the
Kalman Filter, are shown in Fig. 15b in solid curves. For
comparison, the covariances from cycle 1 were also plot-
ted in dashed curves in Fig. 15b. It is worth noting that at
x3 = 320, the amplitude of the variance has been divided by
approximately two over the seven assimilation cycles. The
shape of the covariance function evolves over time, espe-
cially downstream of the observation point. The correlation
functions are clearly anisotropic with a shorter correlation
length scale downstream than upstream of the observation
point. The local correlation function forx2 = xobs in Bc1 and
Bc8, respectively denoted byρc1(x2,x) and ρc8(x2,x), are
shown in Fig. 15c. The correlation length is divided by ap-
proximately five in this plot along the 7 assimilation cycles
of the Kalman Filter. This factor doesn’t vary significantly
when the Kalman Filter is further iterated.



Appendix B

Estimation of the local correlation length in B for
the hydraulic state correction procedure

The objective here was to determine the correlation length
of the spatial correlation function for the errors in the water
level and the discharge errors produced with MASCARET.
This determination was two-fold. First a diffusion coeffi-
cient κ, based on the dynamics of the diffusive flood wave
approximation model (Eq. 16), was graphically estimated by
studying the propagation of a perturbation of the hydraulic
state. Then, this diffusion coefficient was used to calculate
the spatial correlation length of the state perturbation covari-
ance function.

The diffusion coefficientκ is estimated by simulating the
response to an upstream perturbation along the water line.
For a stationary discharge and water level, for each stretch
of the river, a small but steep perturbation is added to the
upstream flow. This perturbation is propagated and diffused
over time to the observation points. A perturbation of the
form

h̃(x,0)=
1

2
erf(

x
√

2 ltemp,0
)+

1

2
, (B1)

that sums up to a Heaviside function ifl0 → 0, was added at
the upstream flows̃q(t). This perturbation is propagated by
Eq. (16) towards the observation points where, at timet , the
state is described bỹh(x,t) given by:

h̃(x,t)=
1

2
erf

[
x −ct

√
2 ltemp(t)

]
+

1

2
(B2)

with ltemp(t)
2
= l2temp,0+2κt.

The parametersκ andc are estimated from the numerical
solutionh̃(x,t) of MASCARET as follows:

– c ≈
sr
tr

wheresr is the curvilinear distance between the
upstream station and the observation point andtr is the
time between the upstream perturbation and the arrival
of the step perturbation at the observation point,

– ltemp(tr) ≈ cT whereT is the time between the +20% of
the initial discharge and−20% of the final discharge.T
is graphically estimated for the simulated discharge at
the observation points,

– κ =

√
ltemp(tr)2−l2temp,0

2tr
with l2temp,0= 0 for the Heaviside

initial condition which is close to the conditions de-
scribed in this case.

Using these three relations when the perturbation reaches the

observation point,κ is estimated byT
2s2

r
2t3r

wheresr is known

when asT andtr are graphically estimated for the simulated
discharges.

Like the initial and boundary conditions, the temporal co-
variance functionR(τ) of q̃(t) is also propagated by the dif-
fusive flood wave propagation equation Eq. (16). Since the
temporal covariance functionR(τ) is Gaussian and because
the theory of random function diffusion applies, the spatial
covariance function of̃h(x,t) can be approximated as Gaus-
sian. Assuming that the spatial covariance function for the
boundary condition is chosen to be Gaussian and denoted
by B0, the covariance function for the solution at timet is
given byBt = M tB0MT

t whereM t stands for the advection-
diffusion processes. Since advection process no effect on the
covariance function, this formula can be written in the ad-
vected referential. In this referential,̃Bt = L tLT

t = L2t where
L t represents the diffusion operator. The spatial correlation
length inB̃t decreases with the distance:

l2(x) = l20 +4κ
x

c
. (B3)

The correlation lengthl(x) is locally defined for any loca-
tion in the domain. For the IKF assimilation algorithm, only
the correlation length at the observation pointxobs is needed.
The local correlation length at the observation point is then
calculated using Eq. (B3). For an application with MAS-
CARET, a realistic upstream flow is described from which
l20 could be determined or when the observation point is far
enough from the upstream stationsl20 � 4κ

xobs
c

.
This graphical approach leads to the estimation of a local

correlation lengthl2(x) at each observation point based on
the perturbation of the upstream flow at one upstream station.
Since there are several upstream stations for this study, there
are several resulting signals̃h(x,t) reaching the observation
point, leading to several estimations ofl(xobs). At the obser-
vation point, the spatial correlation function is approximated
as Gaussian, resulting from the sum of Gaussian functions of
respective correlation lengthli and amplitudeai . The corre-
lation length of the resulting Gaussian can be approximated
by:

l(xobs) =

∑
i ai li(xobs)∑

i ai

(B4)

where the subscripti denotes the number of the upstream
station (i∈ [1,4] for the Adour catchment andi ∈ [1,4] for
the Marne Vallage catchment).
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