670 research outputs found

    Observation of quantum depletion in a nonequilibrium exciton-polariton condensate

    Full text link
    The property of superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) of interacting bosons. However, even at zero temperature, when one would expect the whole bosonic quantum liquid to become condensed, a fraction of it is excited into higher momentum states via interparticle interactions and quantum fluctuations -- the phenomenon of quantum depletion. Quantum depletion of weakly interacting atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This is even more challenging in driven-dissipative systems such as exciton-polariton condensates(photons coupled to electron-hole pairs in a semiconductor), since their nonequilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of an optically trapped high-density exciton-polariton condensate by directly detecting the spectral branch of elementary excitations populated by this process. Analysis of the population of this branch in momentum space shows that quantum depletion of an exciton-polariton condensate can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the fraction of matter (exciton) in an exciton-polariton. Our results reveal the effects of exciton-polariton interactions beyond the mean-field description and call for a deeper understanding of the relationship between equilibrium and nonequilibrium BECs.Comment: 18 pages, 5 figures, with supplementary informatio

    Bronchiectasis-associated infections and outcomes in a large, geographically diverse electronic health record cohort in the United States

    Get PDF
    BACKGROUND: Bronchiectasis is a pulmonary disease characterized by irreversible dilation of the bronchi and recurring respiratory infections. Few studies have described the microbiology and prevalence of infections in large patient populations outside of specialized tertiary care centers.METHODS: We used the Cerner HealthFacts Electronic Health Record database to characterize the nature, burden, and frequency of pulmonary infections among persons with bronchiectasis. Chronic infections were defined based on organism-specific guidelines.RESULTS: We identified 7,749 patients who met our incident bronchiectasis case definition. In this study population, the organisms with the highest rates of isolate prevalence were Pseudomonas aeruginosa with 937 (12%) individuals, Staphylococcus aureus with 502 (6%), Mycobacterium avium complex (MAC) with 336 (4%), and Aspergillus sp. with 288 (4%). Among persons with at least one isolate of each respective pathogen, 219 (23%) met criteria for chronic P. aeruginosa colonization, 74 (15%) met criteria for S. aureus chronic colonization, 101 (30%) met criteria for MAC chronic infection, and 50 (17%) met criteria for Aspergillus sp. chronic infection. Of 5,795 persons with at least two years of observation, 1,860 (32%) had a bronchiectasis exacerbation and 3,462 (60%) were hospitalized within two years of bronchiectasis diagnoses. Among patients with chronic respiratory infections, the two-year occurrence of exacerbations was 53% and for hospitalizations was 82%.CONCLUSIONS: Patients with bronchiectasis experiencing chronic respiratory infections have high rates of hospitalization.</p

    Bogoliubov excitations of a polariton condensate in dynamical equilibrium with an incoherent reservoir

    Full text link
    The classic Bogoliubov theory of weakly interacting Bose gases rests upon the assumption that nearly all the bosons condense into the lowest quantum state at sufficiently low temperatures. Here we develop a generalized version of Bogoliubov theory for the case of a driven-dissipative exciton-polariton condensate with a large incoherent uncondensed component, or excitonic reservoir. We argue that such a reservoir can consist of both excitonic high-momentum polaritons and optically dark superpositions of excitons across different optically active layers, such as multiple quantum wells in a microcavity. In particular, we predict interconversion between the dark and bright (light-coupled) excitonic states that can lead to a dynamical equilibrium between the condensate and reservoir populations. We show that the presence of the reservoir fundamentally modifies both the energy and the amplitudes of the Bogoliubov quasiparticle excitations due to the non-Galilean-invariant nature of polaritons. Our theoretical findings are supported by our experiment, where we directly detect the Bogoliubov excitation branches of an optically trapped polariton condensate in the high-density regime. By analyzing the measured occupations of the excitation branches, we extract the Bogoliubov amplitudes across a range of momenta and show that they agree with our generalized theory.Comment: 16 pages, 7 figure

    Safety and feasibility of intranasal heroin-assisted treatment: 4-week preliminary findings from a Swiss multicentre observational study

    Full text link
    Background: Heroin-assisted treatment (HAT) is effective for individuals with severe opioid use disorder (OUD) who do not respond sufficiently to other opioid agonist treatments. It is mostly offered with injectable diacetylmorphine (DAM) or DAM tablets creating a barrier for individuals who need the rapid onset of action but are either unable or unwilling to inject, or primarily snort opioids. To explore another route of administration, we evaluated the safety and feasibility of intranasal (IN) DAM. Methods: This is a multicentre observational cohort study among patients in Swiss HAT. All patients planning to receive IN DAM within the treatment centres were eligible to participate. Participants were either completely switched to IN DAM or received IN DAM in addition to other DAM formulations or opioid agonists. Patients were followed up for four weeks. Sociodemographic characteristics, current HAT regimen, reasons for starting IN DAM, IN DAM doses, number of injection events in the sample, IN DAM continuation rate, and appearance of adverse events and nose-related problems were evaluated. Results: Participants (n = 52) reported vein damage, preference for nasal route of administration, and desire of a stronger effect or for a less harmful route of administration as primary reasons for switching to IN DAM. After four weeks, 90.4% of participants (n = 47) still received IN DAM. Weekly average realised injection events decreased by 44.4% from the month before IN DAM initiation to the month following. No severe adverse events were reported. Conclusions: After four weeks, IN DAM was a feasible and safe alternative to other routes of administration for patients with severe OUD in HAT. It addressed the needs of individuals with OUD and reduced injection behaviour. More long-term research efforts are needed to systematically assess efficacy of and patient satisfaction with IN DAM

    iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types.

    Get PDF
    Large-scale collections of induced pluripotent stem cells (iPSCs) could serve as powerful model systems for examining how genetic variation affects biology and disease. Here we describe the iPSCORE resource: a collection of systematically derived and characterized iPSC lines from 222 ethnically diverse individuals that allows for both familial and association-based genetic studies. iPSCORE lines are pluripotent with high genomic integrity (no or low numbers of somatic copy-number variants) as determined using high-throughput RNA-sequencing and genotyping arrays, respectively. Using iPSCs from a family of individuals, we show that iPSC-derived cardiomyocytes demonstrate gene expression patterns that cluster by genetic background, and can be used to examine variants associated with physiological and disease phenotypes. The iPSCORE collection contains representative individuals for risk and non-risk alleles for&nbsp;95% of SNPs associated with human phenotypes through genome-wide association studies. Our study demonstrates the utility of iPSCORE for examining how genetic variants influence molecular and physiological traits in iPSCs and derived cell lines

    Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents

    Get PDF
    Rationale: Primary ciliary dyskinesia (PCD), a genetically heterogeneous, recessive disorder of motile cilia, is associated with distinct clinical features. Diagnostic tests, including ultrastructural analysis of cilia, nasal nitric oxide measurements, and molecular testing for mutations in PCD genes, have inherent limitations

    Observation of quantum depletion in a non-equilibrium exciton-polariton condensate

    Get PDF
    Superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations-the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton-polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton-polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton-polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton-polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.This work was supported by the Australian Research Council (ARC) through the Centre of Excellence Grant CE170100039. The work at Pittsburgh was funded by the Army Research Office (Grant No. W911NF-15-1-0466). The work of sample fabrication at Princeton was funded by the Gordon and Betty Moore Foundation (GBMF-4420) and by the National Science Foundation MRSEC programme through the Princeton Center for Complex Materials (Grant No. DMR-0819860). J.L. was supported through the Australian Research Council Future Fellowship FT160100244. M.P. would like to acknowledge useful discussions with Ryo Hanai
    • …
    corecore