21,816 research outputs found

    Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    Get PDF
    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers

    Radar backscattering data for surfaces of geological interest

    Get PDF
    Radar backscattering data for surfaces of geological interes

    Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite

    Get PDF
    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions

    The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function

    Get PDF
    Poly (ADP-ribose) is synthesized at DNA single-strand breaks and can promote the recruitment of the scaffold protein, XRCC1. However, the mechanism and importance of this process has been challenged. To address this issue, we have characterized the mechanism of poly (ADP-ribose) binding by XRCC1 and examined its importance for XRCC1 function. We show that the phosphate-binding pocket in the central BRCT1 domain of XRCC1 is required for selective binding to poly (ADP-ribose) at low levels of ADP-ribosylation, and promotes interaction with cellular PARP1. We also show that the phosphate-binding pocket is required for EGFP-XRCC1 accumulation at DNA damage induced by UVA laser, H2O2, and at sites of sub-nuclear PCNA foci, suggesting that poly (ADP-ribose) promotes XRCC1 recruitment both at single-strand breaks globally across the genome and at sites of DNA replication stress. Finally, we show that the phosphate-binding pocket is required following DNA damage for XRCC1-dependent acceleration of DNA single-strand break repair, DNA base excision repair, and cell survival. These data support the hypothesis that poly (ADP-ribose) synthesis promotes XRCC1 recruitment at DNA damage sites and is important for XRCC1 function

    What Indians think an Indian is : a study of personal and educational attitudes

    Get PDF
    This study, was conducted with four Indian groups: three of Portland and one in Whiteriver, Arizona. The purpose of the study was to identify attitudes about Indian identity and education through the use of a questionnaire on Indian stereotypes. Each group was unique in it’s response. Members of each group all had a different frame of reference for “who an Indian is.” Therefore, a conclusion could not be drawn because of the differences in attitudes between all four Indian groups

    Chemical mechanical polishing of thin film diamond

    Get PDF
    The demonstration that Nanocrystalline Diamond (NCD) can retain the superior Young's modulus (1,100 GPa) of single crystal diamond twinned with its ability to be grown at low temperatures (<450 {\deg}C) has driven a revival into the growth and applications of NCD thin films. However, owing to the competitive growth of crystals the resulting film has a roughness that evolves with film thickness, preventing NCD films from reaching their full potential in devices where a smooth film is required. To reduce this roughness, films have been polished using Chemical Mechanical Polishing (CMP). A Logitech Tribo CMP tool equipped with a polyurethane/polyester polishing cloth and an alkaline colloidal silica polishing fluid has been used to polish NCD films. The resulting films have been characterised with Atomic Force Microscopy, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy. Root mean square roughness values have been reduced from 18.3 nm to 1.7 nm over 25 {\mu}m2^2, with roughness values as low as 0.42 nm over ~ 0.25 {\mu}m2^2. A polishing mechanism of wet oxidation of the surface, attachment of silica particles and subsequent shearing away of carbon has also been proposed.Comment: 6 pages, 6 figure

    Silos and Silage

    Get PDF

    Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2.

    Get PDF
    Poly(ADP-ribose) polymerase-1 (PARP-1) has become an important pharmacological target in the treatment of cancer due to its cellular role as a 'DNA-strand break sensor', which leads in part to resistance to some existing chemo- and radiological treatments. Inhibitors have now been developed which prevent PARP-1 from synthesizing poly(ADP-ribose) in response to DNA-breaks and potentiate the cytotoxicity of DNA damaging agents. However, with the recent discoveries of PARP-2, which has a similar DNA-damage dependent catalytic activity, and additional members containing the 'PARP catalytic' signature, the isoform selectivity and resultant pharmacological effects of existing inhibitors are brought into question. We present here the crystal structure of the catalytic fragment of murine PARP-2, at 2.8 A resolution, and compare this to the catalytic fragment of PARP-1, with an emphasis on providing a possible framework for rational drug design in order to develop future isoform-specific inhibitors
    corecore