2,443 research outputs found

    Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9

    Get PDF
    Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricemia contributes to development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. Additionally, how uric acid is cleared from the circulation is incompletely understood. Here, we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricemia, hyperuricosuria, spontaneous hypertension, dyslipidemia, and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolemia. These data provide evidence that hyperuricemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome

    In-situ study and modeling of the reaction kinetics during molecular beam epitaxy of GeO2 and its etching by Ge

    Full text link
    Rutile GeO2 has been predicted to be an ultra-wide bandgap semiconductor suitable for future power electronics devices while quartz-like GeO2 shows piezoelectric properties. To explore these crystalline phases for application and fundamental materials investigations, molecular beam epitaxy (MBE) is a well-suited thin film growth technique. In this study, we investigate the reaction kinetics of GeO2 during plasma-assisted MBE using elemental Ge and plasma-activated oxygen fluxes. The growth rate as a function of oxygen flux is measured in-situ by laser reflectometry at different growth temperatures. A flux of the suboxide GeO desorbing off the growth surface is identified and quantified in-situ by the line-of-sight quadrupole mass spectrometry. Our measurements reveal that the suboxide formation and desorption limits the growth rate under metal-rich or high temperature growth conditions, and leads to etching of the grown GeO2 layer under Ge flux in the absence of oxygen. The quantitative results fit the sub-compound mediated reaction model, indicating the intermediate formation of the suboxide at the growth front. This model is further utilized to delineate the GeO2-growth window in terms of oxygen-flux and substrate temperature. Our study can serve as a guidance for the thin film synthesis of GeO2 and defect-free mesa etching in future GeO2-device processing

    Study of W boson production in pPb collisions at √sNN = 5.02 TeV

    Get PDF
    The first study of W boson production in pPb collisions is presented, for bosons decaying to a muon or electron, and a neutrino. The measurements are based on a data sample corresponding to an integrated luminosity of 34.6 nb−1 at a nucleon–nucleon centre-of-mass energy of View the MathML source, collected by the CMS experiment. The W boson differential cross sections, lepton charge asymmetry, and forward–backward asymmetries are measured for leptons of transverse momentum exceeding 25 GeV/c , and as a function of the lepton pseudorapidity in the |ηlab|<2.4 range. Deviations from the expectations based on currently available parton distribution functions are observed, showing the need for including W boson data in nuclear parton distribution global fits.BMWF ; FWF ; FNRS ; FWO ; CNPq ; CAPES ; FAPERJ ; FAPESP ; MES ; CERN ; CAS ; MoST ; NSFC ; COLCIENCIAS ; MSES ; RPF ; MoER ; ERDF ; Academy of Finland ; MEC ; HIP ; CEA ; CNRS ; BMBF ; DFG ; HGF ; GSRT ; OTKA ; NKTH ; DAE ; DST ; IPM ; SFI ; INFN ; NRF ; WCU ; LAS ; CINVESTAV ; CONACYT ; UASLP-FAI ; MSI ; PAEC ; MSHE ; NSC ; FCT ; JINR ; MON ; RosAtom ; RAS ; RFBR ; MESTD ; SEIDI ; CPAN ; Swiss Funding Agencies ; NSC ; ThEPCenter ; IPST ; STAR ; NSTDA ; TUBITAK ; TAEK ; NASU ; STFC ; DOE ; NSF.publisher versio

    Epitaxial synthesis of unintentionally doped p-type SnO (001) via suboxide molecular beam epitaxy

    Full text link
    By employing a mixed SnO2_2+Sn source, we demonstrate suboxide molecular beam epitaxy growth of phase-pure single crystalline metastable SnO(001) thin films at a growth rate of ~1.0nm/min without the need for additional oxygen. These films grow epitaxially across a wide substrate temperature range from 150 to 450{\deg}C. Hence, we present an alternative pathway to overcome the limitations of high Sn or SnO2_2 cell temperatures and narrow growth windows encountered in previous MBE growth of metastable SnO. In-situ laser reflectometry and line-of-sight quadrupole mass spectrometry were used to investigate the rate of SnO desorption as a function of substrate temperature. While SnO ad-molecules desorption at Ts = 450{\deg}C was growth-rate limiting,the SnO films did not desorb at this temperature after growth in vacuum. The SnO (001) thin films are transparent and unintentionally p-type doped, with hole concentrations and mobilities in the range of 0.9 to 6.0x1018^{18}cm3^{-3} and 2.0 to 5.5 cm2^2/V.s, respectively. These p-type SnO films obtained at low temperatures are promising for back-end-of-line (BEOL) compatible applications and for integration with n-type oxides in p-n heterojunction and field-effect transistorsComment: 18 pages, 10 figure

    Identification of four novel QTL linked to the metabolic syndrome in the Berlin Fat Mouse

    Get PDF
    Background: The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. Methods: In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 × BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used. Results: Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome (Chr) 3 (95.8–100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5–26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9–74.6 Mb) and for body weight on Chr 16 (3.9–21.4 Mb). Conclusions: QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose concentration in the insulin-resistant mouse line BFMI861-S1

    New Generation Transparent LPCVD ZnO Electrodes for Enhanced Photocurrent in Micromorph Solar Cells and Modules

    Get PDF
    ZnO bilayer films were deposited by low-pressure chemical vapor deposition in a single process step by controlling the differential doping of the nucleation and bulk parts of the layers. The resulting 2-μm-thick films are characterized by low free-carrier absorption and electron mobility over 40 cm2 /Vs. They, therefore, combine high transparency in the infrared region and moderate sheet resistance that can be lowered below 20 Ω/sq. These properties make ZnO bilayers ideal candidates as electrodes for the development of micromorph thin-film solar cells with enhanced photogenerated current. The potential of such bilayer front electrodes for a further power improvement and cost reduction of industrial micromorph tandem modules is currently investigated at Oerlikon Solar. The first experiments already show a promising gain in the bottom μc-Si:H cell photogenerated current compared with the current generated with modules deposited on standard uniformly doped ZnO single-layer front contacts

    Determination of alpha_s using Jet Rates at LEP with the OPAL detector

    Full text link
    Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy range by fitting an expression in which order alpah_2s calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of alpha_s (Mz) was determined to be alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.) \.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J.

    Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV

    Full text link
    Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.
    corecore