3,035 research outputs found
Precision matrix expansion - efficient use of numerical simulations in estimating errors on cosmological parameters
Computing the inverse covariance matrix (or precision matrix) of large data
vectors is crucial in weak lensing (and multi-probe) analyses of the large
scale structure of the universe. Analytically computed covariances are
noise-free and hence straightforward to invert, however the model
approximations might be insufficient for the statistical precision of future
cosmological data. Estimating covariances from numerical simulations improves
on these approximations, but the sample covariance estimator is inherently
noisy, which introduces uncertainties in the error bars on cosmological
parameters and also additional scatter in their best fit values. For future
surveys, reducing both effects to an acceptable level requires an unfeasibly
large number of simulations.
In this paper we describe a way to expand the true precision matrix around a
covariance model and show how to estimate the leading order terms of this
expansion from simulations. This is especially powerful if the covariance
matrix is the sum of two contributions, , where is well understood
analytically and can be turned off in simulations (e.g. shape-noise for cosmic
shear) to yield a direct estimate of . We test our method
in mock experiments resembling tomographic weak lensing data vectors from the
Dark Energy Survey (DES) and the Large Synoptic Survey Telecope (LSST). For DES
we find that N-body simulations are sufficient to achive negligible
statistical uncertainties on parameter constraints. For LSST this is achieved
with simulations. The standard covariance estimator would require
> simulations to reach a similar precision. We extend our analysis to a
DES multi-probe case finding a similar performance.Comment: 14 pages, submitted to mnra
Towards generating a new supernova equation of state: A systematic analysis of cold hybrid stars
The hadron-quark phase transition in core-collapse supernovae (CCSNe) has the
potential to trigger explosions in otherwise nonexploding models. However,
those hybrid supernova equations of state (EOS) shown to trigger an explosion
do not support the observational 2 M neutron star maximum mass
constraint. In this work, we analyze cold hybrid stars by the means of a
systematic parameter scan for the phase transition properties, with the aim to
develop a new hybrid supernova EOS. The hadronic phase is described with the
state-of-the-art supernova EOS HS(DD2), and quark matter by an EOS with a
constant speed of sound (CSS) of . We find promising cases which
meet the 2 M criterion and are interesting for CCSN explosions. We show
that the very simple CSS EOS is transferable into the well-known thermodynamic
bag model, important for future application in CCSN simulations. In the second
part, the occurrence of reconfinement and multiple phase transitions is
discussed. In the last part, the influence of hyperons in our parameter scan is
studied. Including hyperons no change in the general behavior is found, except
for overall lower maximum masses. In both cases (with and without hyperons) we
find that quark matter with can increase the maximum mass only
if reconfinement is suppressed or if quark matter is absolutely stable.Comment: 14 pages, 11 figures, v2: matches published versio
Vom Treibhausklima der Kreidezeit zum heutigen Eishausklima : auf Spurensuche in Mikrofossilien vom Meeresboden
Wenn Klimaforscher wissen wollen, was die Zukunft
bringt, schauen sie gern in die Vergangenheit. Während
der Kreidezeit herrschte auf der Erde ein Treibhausklima
mit atmosphärischen CO2-Gehalten, die weitaus
höher waren als heute. Welche Konsequenzen das für
die Meeresströmungen und die marinen Ökosysteme
hatte, können Geowissenschaftler heute nicht mehr direkt
messen. Bei der Spurensuche helfen ihnen die
Fossilien mikroskopisch kleiner Einzeller, deren wunderschöne
Kalkschalen als Klimagedächtnis dienen
Statistical properties of the cosmic density field beyond 2-point statistics
Dunkle Materie, dunkle Energie, kosmische Inflation - unser Verständnis der drei Hauptzutaten des kosmologischen Standardmodels ist nach wie vor gering. Das deutet auf allgemeine Lücken in unserem Verständnis der Physik hin. Eine Observable mit dem Potential, diese Lücken zu schließen ist die großskalige Struktur von Dichtefluktuationen im Universum. Beobachtungen der Entwicklung dieser Struktur bei unterschiedlichen Rotverschiebungen können Aufschluss über das genaue Verhalten von dunkler Materie und dunkler Energie geben. Außerdem erlauben solche Beobachtungen Rückschlüsse über die Anfangsbedingungen des Universums, was uns Hinweise auf den genauen Mechanismus der kosmischen Inflation geben kann.
Die späten Stadien in der Entwicklung der großskaligen Struktur sind besonders schwer zu analysieren. Ein Grund dafür ist, dass die Differenzialgleichungen, die das Wachs- tum von Dichtefluktuationen beschreiben, im späten Universum nicht mehr gut durch lineare Gleichungen approximiert werden können. Mit dieser Arbeit präsentiere ich in zweierlei Hinsicht Fortschritte in der Behandlung der späten Strukturbildung. Zum einen verbessere ich Techniken zur Schätzung der statistischen Unsicherheiten in Messungen von 2-Punkt Statistiken des kosmischen Dichtefeldes. Das geschieht in einem ersten Schritt, indem ich die Leistung vorhandener Methoden untersuche und verbessere. Und in einem zweiten Schritt, indem ich eine eine völlig neue Methode präsentiere, die den exorbitanten Rechenaufwand einer weit verbreiteten Prozedur umgeht.
Zum zweiten entwickle ich ein theoretisches Model für eine neue kosmologische Untersuchungsmethode namens Density Split Statistics. Damit wird es ermöglicht die lokale Wahrscheinlichkeitsdichtefunktion von Fluktuationen des Materiedichtfeldes zu studieren. Das eröffnet ein reiches Spektrum an Informationen über die großskalige Struktur des Universums, die mit rein auf 2-Punkt Statistik basierenden Analysen nicht zu erhalten wäre.Dark matter, dark energy, cosmic inflation - the three main ingredients of the cosmological standard model remain poorly understood. This points to general gaps in our understanding of physics. An observable that has the potential to fill these gaps is the large scale structure of density fluctuations in the universe. Observations of the evolution of that large scale structure over a range of different redshift can be used to study the exact behaviour of dark matter and dark energy. Also, such observations can improve our understanding of the initial conditions of the universe and hence point us to the exact mechanism of inflation.
The late stages in the evolution of the large scale structure are particularly difficult to understand. One reason for this is that the differential equations governing the growth of density fluctuations are not well approximated by linear equations in the late time universe. In this work I advance the treatment of late time structure formation in two ways. First, I improve techniques to estimate the statistical uncertainties in measurements of the 2- point statistics of the cosmic density field. This is done in a first step by investigating and refining the performance of existing estimators. And in a second step, by proposing an entirely new method that can bypass the exorbitant computational needs of a prominent existing procedure.
Secondly, I develop a theoretical model for a new cosmological probe called density split statistics. This enables the study of the probability density function (PDF) of matter density fluctuations in the universe. This opens up a rich amount of information about the large scale structure of the universe that is otherwise missed if one only analyses 2-point statistics
Statistical properties of the cosmic density field beyond 2-point statistics
Dunkle Materie, dunkle Energie, kosmische Inflation - unser Verständnis der drei Hauptzutaten des kosmologischen Standardmodels ist nach wie vor gering. Das deutet auf allgemeine Lücken in unserem Verständnis der Physik hin. Eine Observable mit dem Potential, diese Lücken zu schließen ist die großskalige Struktur von Dichtefluktuationen im Universum. Beobachtungen der Entwicklung dieser Struktur bei unterschiedlichen Rotverschiebungen können Aufschluss über das genaue Verhalten von dunkler Materie und dunkler Energie geben. Außerdem erlauben solche Beobachtungen Rückschlüsse über die Anfangsbedingungen des Universums, was uns Hinweise auf den genauen Mechanismus der kosmischen Inflation geben kann.
Die späten Stadien in der Entwicklung der großskaligen Struktur sind besonders schwer zu analysieren. Ein Grund dafür ist, dass die Differenzialgleichungen, die das Wachs- tum von Dichtefluktuationen beschreiben, im späten Universum nicht mehr gut durch lineare Gleichungen approximiert werden können. Mit dieser Arbeit präsentiere ich in zweierlei Hinsicht Fortschritte in der Behandlung der späten Strukturbildung. Zum einen verbessere ich Techniken zur Schätzung der statistischen Unsicherheiten in Messungen von 2-Punkt Statistiken des kosmischen Dichtefeldes. Das geschieht in einem ersten Schritt, indem ich die Leistung vorhandener Methoden untersuche und verbessere. Und in einem zweiten Schritt, indem ich eine eine völlig neue Methode präsentiere, die den exorbitanten Rechenaufwand einer weit verbreiteten Prozedur umgeht.
Zum zweiten entwickle ich ein theoretisches Model für eine neue kosmologische Untersuchungsmethode namens Density Split Statistics. Damit wird es ermöglicht die lokale Wahrscheinlichkeitsdichtefunktion von Fluktuationen des Materiedichtfeldes zu studieren. Das eröffnet ein reiches Spektrum an Informationen über die großskalige Struktur des Universums, die mit rein auf 2-Punkt Statistik basierenden Analysen nicht zu erhalten wäre.Dark matter, dark energy, cosmic inflation - the three main ingredients of the cosmological standard model remain poorly understood. This points to general gaps in our understanding of physics. An observable that has the potential to fill these gaps is the large scale structure of density fluctuations in the universe. Observations of the evolution of that large scale structure over a range of different redshift can be used to study the exact behaviour of dark matter and dark energy. Also, such observations can improve our understanding of the initial conditions of the universe and hence point us to the exact mechanism of inflation.
The late stages in the evolution of the large scale structure are particularly difficult to understand. One reason for this is that the differential equations governing the growth of density fluctuations are not well approximated by linear equations in the late time universe. In this work I advance the treatment of late time structure formation in two ways. First, I improve techniques to estimate the statistical uncertainties in measurements of the 2- point statistics of the cosmic density field. This is done in a first step by investigating and refining the performance of existing estimators. And in a second step, by proposing an entirely new method that can bypass the exorbitant computational needs of a prominent existing procedure.
Secondly, I develop a theoretical model for a new cosmological probe called density split statistics. This enables the study of the probability density function (PDF) of matter density fluctuations in the universe. This opens up a rich amount of information about the large scale structure of the universe that is otherwise missed if one only analyses 2-point statistics
Self-Organized Synchronization and Voltage Stability in Networks of Synchronous Machines
The integration of renewable energy sources in the course of the energy
transition is accompanied by grid decentralization and fluctuating power
feed-in characteristics. This raises new challenges for power system stability
and design. We intend to investigate power system stability from the viewpoint
of self-organized synchronization aspects. In this approach, the power grid is
represented by a network of synchronous machines. We supplement the classical
Kuramoto-like network model, which assumes constant voltages, with dynamical
voltage equations, and thus obtain an extended version, that incorporates the
coupled categories voltage stability and rotor angle synchronization. We
compare disturbance scenarios in small systems simulated on the basis of both
classical and extended model and we discuss resultant implications and possible
applications to complex modern power grids.Comment: 9 pages, 9 figure
Emergence of Gravitational Potential and Time Dilation from Non-interacting Systems Coupled to a Global Quantum Clock
We study gravitational back-reaction within relational time formulations of
quantum mechanics by considering two versions of time: a time coordinate,
modelled as a global quantum degree of freedom, and the proper time of a given
physical system, modelled via an internal degree of freedom serving as a local
quantum "clock". We show that interactions between coordinate time and
mass-energy in a global Wheeler-DeWitt-like constraint lead to gravitational
time dilation. In the presence of a massive object this agrees with time
dilation in a Schwarzchild metric at leading order in . Furthermore, if two
particles couple independently to the time coordinate we show that Newtonian
gravitational interaction between those particles emerges in the low energy
limit. We also observe features of renormalization of high energy divergences.Comment: Essay written for the Gravity Research Foundation's 2023 Awards for
Essays on Gravitatio
Lagrangian Investigation of Two-Dimensional Decaying Turbulence
We present a numerical investigation of two-dimensional decaying turbulence
in the Lagrangian framework. Focusing on single particle statistics, we
investigate Lagrangian trajectories in a freely evolving turbulent velocity
field. The dynamical evolution of the tracer particles is strongly dominated by
the emergence and evolution of coherent structures. For a statistical analysis
we focus on the Lagrangian acceleration as a central quantity. For more
geometrical aspects we investigate the curvature along the trajectories. We
find strong signatures for self-similar universal behavior
A multivariate extension of the Lorenz curve based on copulas and a related multivariate Gini coefficient
We propose an extension of the univariate Lorenz curve and of the Gini coefficient to the multivariate case, i.e., to simultaneously measure inequality in more than one variable. Our extensions are based on copulas and measure inequality stemming from inequality in each single variable as well as inequality stemming from the dependence structure of the variables. We derive simple nonparametric estimators for both instruments and exemplary apply them to data of individual income and wealth for various countries
- …