722 research outputs found

    ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals

    Get PDF
    In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis

    The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare).

    Get PDF
    Responses to prolonged low-temperature treatment of imbibed seeds (vernalization) were examined in barley (Hordeum vulgare). These occurred in two phases: the perception of prolonged cold, which occurred gradually at low temperatures, and the acceleration of reproductive development, which occurred after vernalization. Expression of the VERNALIZATION1 gene (HvVRN1) increased gradually in germinating seedlings during vernalization, both at the shoot apex and in the developing leaves. This occurred in darkness, independently of VERNALIZATION2 (HvVRN2), consistent with the hypothesis that expression of HvVRN1 is induced by prolonged cold independently of daylength flowering-response pathways. After vernalization, expression of HvVRN1 was maintained in the shoot apex and leaves. This was associated with accelerated inflorescence initiation and with down-regulation of HvVRN2 in the leaves. The largest determinant of HvVRN1 expression levels in vernalized plants was the length of seed vernalization treatment. Daylength did not influence HvVRN1 expression levels in shoot apices and typically did not affect expression in leaves. In the leaves of plants that had experienced a saturating seed vernalization treatment, expression of HvVRN1 was higher in long days, however. HvFT1 was expressed in the leaves of these plants in long days, which might account for the elevated HvVRN1 expression. Long-day up-regulation of HvVRN1 was not required for inflorescence initiation, but might accelerate subsequent stages of inflorescence development. Similar responses to seed vernalization were also observed in wheat (Triticum aestivum). These data support the hypothesis that VRN1 is induced by cold during winter to promote spring flowering in vernalization-responsive cereals

    Intestinal Organoids in Colitis Research: Focusing on Variability and Cryopreservation

    Get PDF
    In recent years, stem cell-derived organoids have become a cell culture standard that is widely used for studying various scientific issues that were previously investigated through animal experiments and using common tumor cell lines. After their initial hype, concerns regarding their standardization have been raised. Here, we aim to provide some insights into our experience in standardizing murine colonic epithelial organoids, which we use as a replacement method for research on inflammatory bowel disease. Considering good scientific practice, we examined various factors that might challenge the design and outcome of experiments using these organoids. First, to analyze the impact of antibiotics/antimycotics, we performed kinetic experiments using ZellShield® and measured the gene expression levels of the tight junction markers Ocln, Zo-1, and Cldn4, the proliferation marker Ki67, and the proinflammatory cytokine Tnfα. Because we found no differences between cultivations with and without ZellShield®, we then performed infection experiments using the probiotic Escherichia coli Nissle 1917 as an already established model setup to analyze the impact of technical, interexperimental, and biologic replicates. We demonstrate that interexperimental differences pose the greatest challenge for reproducibility and explain our strategies for addressing these differences. Additionally, we conducted infection experiments using freshly isolated and cryopreserved/thawed organoids and found that cryopreservation influenced the experimental outcome during early passages. Formerly cryopreserved colonoids exhibited a premature appearance and a higher proinflammatory response to bacterial stimulation. Therefore, we recommend analyzing the growth characteristics and reliability of cryopreserved organoids before to their use in experiments together with conducting several independent experiments under standardized conditions. Taken together, our findings demonstrate that organoid culture, if standardized, constitutes a good tool for reducing the need for animal experiments and might further improve our understanding of, for example, the role of epithelial cells in inflammatory bowel disease development

    Modeling time delay in the NFκB signaling pathway following low dose IL-1 stimulation

    Get PDF
    Stimulation of human epithelial cells with IL-1 (10 ng/ml) + UVB radiation results in sustained NFκB activation caused by continuous IKKβ phosphorylation. We have recently published a strictly reduced ordinary differential equation model elucidating the involved mechanisms. Here, we compare model extensions for low IL-1 doses (0.5 ng/ml), where delayed IKKβ phosphorylation is observed. The extended model including a positive regulatory element, most likely auto-ubiquitination of TRAF6, reproduces the observed experimental data most convincingly. The extension is shown to be consistent with the original model and contains very sensitive processes which may serve as potential intervention targets

    Oxidation-Specific Epitopes (OSEs) Dominate the B Cell Response in Murine Polymicrobial Sepsis

    Get PDF
    In murine abdominal sepsis by colon ascendens stent peritonitis (CASP), a strong increase in serum IgM and IgG antibodies was observed, which reached maximum values 14 days following sepsis induction. The specificity of this antibody response was studied in serum and at the single cell level using a broad panel of bacterial, sepsis-unrelated as well as self-antigens. Whereas an antibacterial IgM/IgG response was rarely observed, studies at the single-cell level revealed that IgM antibodies, in particular, were largely polyreactive. Interestingly, at least 16% of the IgM mAbs and 20% of the IgG mAbs derived from post-septic mice showed specificity for oxidation-specific epitopes (OSEs), which are known targets of the innate/adaptive immune response. This identifies those self-antigens as the main target of B cell responses in sepsis

    Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization

    Full text link
    [EN] Intraoperative radiotherapy using mobile linear accelerators is used for a wide variety of malignancies. However, when large fields are used in combination with high energies, a deterioration of the flatness dose profile is measured with respect to smaller fields and lower energies. Indeed, for the LIAC HWL of Sordina, this deterioration is observed for the 12 MeV beam combined with 10 cm (or larger) diameter applicator. Aimed to solve this problem, a flattening filter has been designed and validated evaluating the feasibility of its usage at the upper part of the applicator. The design of the filter was based on Monte Carlo simulations because of its accuracy in modeling components of clinical devices, among other purposes. The LIAC 10 cm diameter applicator was modeled and simulated independently by two different research groups using two different MC codes, reproducing the heterogeneity of the 12 MeV energy beam. Then, an iterative process of filter design was carried out. Finally, the MC designed conical filter with the optimal size and height to obtain the desired flattened beam was built in-house using a 3D printer. During the experimental validation of the applicator-filter, percentage depth dose, beam profiles, absolute and peripheral dose measurements were performed to demonstrate the effectiveness of the filter addition in the applicator. These measurements conclude that the beam has been flattened, from 5.9% with the standard configuration to 1.6% for the configuration with the filter, without significant increase of the peripheral dose. Consequently, the new filter-applicator LIAC configuration can be used also in a conventional surgery room. A reduction of 16% of the output dose and a reduction of 1.1 mm in the D50 of the percentage depth dose was measured with respect to the original configuration. This work is a proof-of-concept that demonstrates that it is possible to add a filter able to flatten the beam delivered by the Sordina LIAC HWL. Future studies will focus on more refined technical solutions fully compatible with the integrity of the applicator, including its sterilization, to be safely introduced in the clinical practice.The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Giuseppe Felici reports a relationship with S.I.T. Sordina IORT Technologies S.p.A. that includes: employment. We thank the professionals and facilities at the 3D printing and metrology department in the Mechanics Unit at IFIC. JV thanks I. Diaz for measuring the PLA density. We thank S.I.T. SORDINA IORT Tech-nologies SpA for providing the applicator used for testing the filter during the measurements. JV, FB, and JP would like to acknowledge the Spanish "Ministerio de Ciencia e Innovacion" (MCIN) grant PID2021-125096NB-I00 funded by MCIN/AEI/10.13039 and the "Generalitat Valenciana" (GVA) grant PROMETEO/2021/064.Oliver-Gil, S.; Vijande, J.; Tejedor-Aguilar, N.; Miró Herrero, R.; Rovira-Escutia, JJ.; Ballester, F.; Juste-Vidal, B.... (2023). Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization. Radiation Physics and Chemistry. 212. https://doi.org/10.1016/j.radphyschem.2023.11110221

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening

    Get PDF
    Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species.Fil: Centeno, Danilo C.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Osorio, Sonia. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Nunes Nesi, Adriano. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Bertolo, Ana L. F.. Cornell University; Estados UnidosFil: Carneiro, Raphael T.. Cornell University; Estados UnidosFil: Araújo, Wagner L.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Steinhauser, Marie Caroline. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Michalska, Justyna. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Rohrmann, Johannes. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Geigenberger, Peter. Technische Universitat München; AlemaniaFil: Oliver, Sandra N.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Stitt, Mark. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rose, Jocelyn K. C.. Cornell University; Estados UnidosFil: Fernie, Alisdair R.. Max Planck Institute Of Molecular Plant Physiology; Alemani

    Neurosurgery outcomes and complications in a monocentric 7-year patient registry

    Full text link
    Introduction Capturing adverse events reliably is paramount for clinical practice and research alike. In the era of “big data”, prospective registries form the basis of clinical research and quality improvement. Research question To present results of long-term implementation of a prospective patient registry, and evaluate the validity of the Clavien-Dindo grade (CDG) to classify complications in neurosurgery. Materials and methods A prospective registry for cranial and spinal neurosurgical procedures was implemented in 2013. The CDG – a complication grading focused on need for unplanned therapeutic intervention – was used to grade complications. We assess construct validity of the CDG. Results Data acquisition integrated into our hospital workflow permitted to include all eligible patients into the registry. We have registered 8226 patients that were treated in 11994 surgeries and 32494 consultations up until December 2020. Similarly, we have captured 1245 complications on 6308 patient discharge forms (20%) since full operational status of the registry. The majority of complications (819/6308 ​= ​13%) were treated without invasive treatment (CDG 1 or CDG 2). At discharge, there was a clear correlation of CDG and the Karnofsky Performance Status (KPS, rho ​= ​-0.29, slope -7 KPS percentage points per increment of CDG) and the length of stay (rho ​= ​0.43, slope 3.2 days per increment of CDG)
    corecore