3,993 research outputs found

    A lunar base for SETI (Search for Extraterrestrial Intelligence)

    Get PDF
    The possibilities of using lanar based radio antennas in search of intelligent extraterrestrial communications is explored. The proposed NASA search will have two search modes: (1) An all sky survey covering the frequency range from 1 to 10 GHz; and (2) A high sensitivity targeted search listening for signals from the approx. 800 solar type stars within 80 light years of the Sun, and covering 1 to 3 GHz

    The Disunity of Consciousness

    Get PDF
    It is commonplace for both philosophers and cognitive scientists to express their allegiance to the "unity of consciousness". This is the claim that a subjectÂ’s phenomenal consciousness, at any one moment in time, is a single thing. This view has had a major influence on computational theories of consciousness. In particular, what we call single-track theories dominate the literature, theories which contend that our conscious experience is the result of a single consciousness-making process or mechanism in the brain. We argue that the orthodox view is quite wrong: phenomenal experience is not a unity, in the sense of being a single thing at each instant. It is a multiplicity, an aggregate of phenomenal elements, each of which is the product of a distinct consciousness-making mechanism in the brain. Consequently, cognitive science is in need of a multi-track theory of consciousness; a computational model that acknowledges both the manifold nature of experience, and its distributed neural basis

    Land-use change alters the mechanisms assembling rainforest mammal communities in Borneo

    Get PDF
    1. The assembly of species communities at local scales is thought to be driven by environmental filtering, species interactions and spatial processes such as dispersal limitation. Little is known about how the relative balance of these drivers of community assembly changes along environmental gradients, especially manmade environmental gradients associated with land-use change. 2. Using concurrent camera- and live-trapping, we investigated the local-scale assembly of mammal communities along a gradient of land-use intensity (old-growth forest, logged forest and oil palm plantations) in Borneo. We hypothesised that increasing land-use intensity would lead to an increasing dominance of environmental control over spatial processes in community assembly. Additionally, we hypothesised that competitive interactions among species might reduce in concert with declines in α-diversity (previously documented) along the land-use gradient. 3. To test our first hypothesis, we partitioned community variance into the fractions explained by environmental and spatial variables. To test our second hypothesis, we used probabilistic models of expected species co-occurrence patterns, in particular focussing on the prevalence of spatial avoidance between species. Spatial avoidance might indicate competition, but might also be due to divergent habitat preferences. 4. We found patterns that are consistent with a shift in the fundamental mechanics governing local community assembly. In support of our first hypothesis, the importance of spatial processes (dispersal limitation and fine-scale patterns of home-ranging) appeared to decrease from low to high intensity land-uses, whilst environmental control increased in importance (in particular due to fine-scale habitat structure). Support for our second hypothesis was weak: whilst we found that the prevalence of spatial avoidance decreased along the land-use gradient, in particular between congeneric species pairs most likely to be in competition, few instances of spatial avoidance were detected in any land-use, and most were likely due to divergent habitat preferences. 5. The widespread changes in land-use occurring in the tropics might be altering not just the biodiversity found in landscapes, but also the fundamental mechanics governing the local assembly of communities. A better understanding of these mechanics, for a range of taxa, could underpin more effective conservation and management of threatened tropical landscapes

    A Subsurface Eddy Associated With a Submarine Canyon Increases Availability and Delivery of Simulated Antarctic Krill to Penguin Foraging Regions

    Get PDF
    The distribution of marine zooplankton depends on both ocean currents and swimming behavior. Many zooplankton perform diel vertical migration (DVM) between the surface and subsurface, which can have different current regimes. If concentration mechanisms, such as fronts or eddies, are present in the subsurface, they may impact zooplankton near-surface distributions when they migrate to near-surface waters. A subsurface, retentive eddy within Palmer Deep Canyon (PDC), a submarine canyon along the West Antarctic Peninsula (WAP), retains diurnal vertically migrating zooplankton in previous model simulations. Here, we tested the hypothesis that the presence of the PDC and its associated subsurface eddy increases the availability and delivery of simulated Antarctic krill to nearby penguin foraging regions with model simulations over a single austral summer. We found that the availability and delivery rates of simulated krill to penguin foraging areas adjacent to PDC were greater when the PDC was present compared to when PDC was absent, and when DVM was deepest. These results suggest that the eddy has potential to enhance krill availability to upper trophic level predators and suggests that retention may play a significant role in resource availability for predators in other similar systems along the WAP and in other systems with sustained subsurface eddies

    Electron Cloud and Beam Scrubbing in the LHC

    Get PDF
    An adequate dose of photoelectrons, accelerated by low-intensity proton bunches and hitting the LHC beam screen wall, will substantially reduce secondary emission and avoid the fast build-up of an electron cloud for the nominal LHC beam. The conditioning period of the liner surface can be considerably shortened thanks to secondary electrons, provided heat load and beam stability can be kept under control; for example this may be possible using a special proton beam, including satellite bunches with an intensity of 15-20% of the nominal bunch intensity and a spacing of one or two RF wavelengths. Based on recent measurements of secondary electron emission, on multipacting tests and simulation results, we discuss possible "beam scrubbing" scenarios in the LHC and present an updat

    Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics

    Get PDF
    Predominant clusters of SDATs that share distinct patterns of abundance during dehydration: A. Predominant patterns of abundance for transcripts in clusters that exhibited increased abundance during dehydration. B. Predominant patterns of abundance for transcripts in clusters that exhibited a decreased abundance during dehydration. (PDF 226 kb

    Evidence for a mitochondrial localization of the retinoblastoma protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The retinoblastoma protein (Rb) plays a central role in the regulation of cell cycle, differentiation and apoptosis. In cancer cells, ablation of Rb function or its pathway is a consequence of genetic inactivation, viral oncoprotein binding or deregulated hyperphosphorylation. Some recent data suggest that Rb relocation could also account for the regulation of its tumor suppressor activity, as is the case for other tumor suppressor proteins, such as p53.</p> <p>Results</p> <p>In this reported study, we present evidence that a fraction of the total amount of Rb protein can localize to the mitochondria in proliferative cells taken from both rodent and human cells. This result is also supported by the use of Rb siRNAs, which substantially reduced the amount of mitochondrial Rb, and by acellular assays, in which [<sup>35</sup>S]-Methionine-labeled Rb proteins bind strongly to mitochondria isolated from rat liver. Moreover, endogenous Rb is found in an internal compartment of the mitochondria, within the inner-membrane. This is consistent with the protection of Rb from alkaline treatment, which destroys any interaction of proteins that are weakly bound to mitochondria.</p> <p>Conclusion</p> <p>Although a few data regarding an unspecific cytosolic localization of Rb protein have been reported for some tumor cells, our results are the first evidence of a mitochondrial localization of Rb. The mitochondrial localization of Rb is observed in parallel with its classic nuclear location and paves the way for the study of potential as-yet-unknown roles of Rb at this site.</p

    A Recirculating Eddy Promotes Subsurface Particle Retention in an Antarctic Biological Hotspot

    Get PDF
    Palmer Deep Canyon is one of the biological hotspots associated with deep bathymetric features along the Western Antarctic Peninsula. The upwelling of nutrient-rich Upper Circumpolar Deep Water to the surface mixed layer in the submarine canyon has been hypothesized to drive increased phytoplankton biomass productivity, attracting krill, penguins and other top predators to the region. However, observations in Palmer Deep Canyon lack a clear in-situ upwelling signal, lack a physiological response by phytoplankton to Upper Circumpolar Deep Water in laboratory experiments, and surface residence times that are too short for phytoplankton populations to reasonably respond to any locally upwelled nutrients. This suggests that enhanced local upwelling may not be the mechanism that links canyons to increased biological activity. Previous observations of isopycnal doming within the canyon suggested that a subsurface recirculating feature may be present. Here, using in-situ measurements and a circulation model, we demonstrate that the presence of a recirculating eddy may contribute to maintaining the biological hotspot by increasing the residence time at depth and retaining a distinct layer of biological particles. Neutrally buoyant particle simulations showed that residence times increase to upwards of 175 days with depth within the canyon during the austral summer. In-situ particle scattering, flow cytometry, and water samples from within the subsurface eddy suggest that retained particles are detrital in nature. Our results suggest that these seasonal, retentive features of Palmer Deep Canyon are important to the establishment of the biological hotspot

    Simulations with different lattice Dirac operators for valence and sea quarks

    Get PDF
    We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a "mixed" action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence quarks. The local Symanzik action for this mixed theory is derived to O(a), and the appropriate low energy chiral effective Lagrangian is constructed, including the leading O(a) contributions. Using this Lagrangian one can calculate expressions for physical observables and determine the Gasser-Leutwyler coefficients by fitting them to the lattice data.Comment: 17 pages, 1 ps figure (2 clarification paragraphs added

    Subsurface Eddy Facilitates Retention of Simulated Diel Vertical Migrators In a Biological Hotspot

    Get PDF
    Diel vertical migration (DVM) is common in zooplankton populations worldwide. Every day, zooplankton leave the productive surface ocean and migrate to deepwater to avoid visual predators and return to the surface at night to feed. This behavior may also help retain migrating zooplankton in biological hotspots. Compared to fast and variable surface currents, deep ocean currents are sluggish, and can be more consistent. The time spent in the subsurface layer is driven by day length and the depth of the surface mixed layer. A subsurface, recirculating eddy has recently been described in Palmer Deep Canyon (PDC), a submarine canyon in a biological hotspot located adjacent to the West Antarctic Peninsula. Circulation model simulations have shown that residence times of neutrally buoyant particles increase with depth within this feature. We hypothesize that DVM into the subsurface eddy increases local retention of migrating zooplankton in this feature and that shallow mixed layers and longer days increase residence times. We demonstrate that simulated vertically migrating zooplankton can have residence times on the order of 30 days over the canyon, which is five times greater than residence times of near-surface, nonmigrating zooplankton within PDC and other adjacent coastal regions. The potential interaction of zooplankton with this subsurface feature may be important to the establishment of the biological hotspot around PDC by retaining food resources in the region. Acoustic field observations confirm the presence of vertical migrators in this region, suggesting that zooplankton retention due to the subsurface eddy is feasible
    • …
    corecore